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Abstract: In this paper, we introduce the Harish-Chandra homomorphism for the quan-
tum superalgebra Uq(g) associated with a simple basic Lie superalgebra g and give an
explicit description of its image.We use it to prove that the center of Uq(g) is isomorphic
to a subring of the ring J (g) of exponential super-invariants in the sense of Sergeev and
Veselov, establishing a Harish-Chandra type theorem for Uq(g). As a byproduct, we
obtain a basis of the center of Uq(g) with the aid of quasi-R-matrix.
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1. Introduction

Harish-Chandra introduced a homomorphism, known as theHarish-Chandra homomor-
phism, for semisimple Lie algebras in the study of unitary representations of semisimple
Lie groups in 1951 [19]. Later on, the Harish-Chandra homomorphism was developed
for infinite dimensional Lie algebras [28,36], Lie superalgebras [28,40,41] and quantum
groups [3,9,25,38,43].

Knowledge about the invariants and the center of quantum superalgebras is notmerely
of mathematical interest but is also physically important. On one hand, the study of the
centralizer of a (quantized) universal enveloping (super)algebra is an indispensable part
of its representation theory. On the other hand, the study of physical theories to a large
extent involves the exploration of the invariants of the symmetry algebras, which usu-
ally correspond to certain physical observables. The Harish-Chandra homomorphism
reveals many connections between the center of the enveloping (super)algebras or their
quantization and the (super)symmetric polynomials as well as the highest weight rep-
resentations of the corresponding algebras, and it has been one of the most inspiring
themes in Lie theory.

Let g be a semisimple Lie algebra (resp., a basic Lie superalgebra) over C with
triangular decomposition g = n− ⊕ h ⊕ n+, where h is a Cartan subalgebra and n+

(resp., n−) is the positive (resp., negative) part of g corresponding to a positive root
system �+. Using the PBW Theorem, we have the decomposition U(g) = U(h) ⊕(
n−U(g) + U(g)n+

)
. Let π : U(g) → U(h) = S(h) be the associated projection. The

restriction of π to the center Z(U(g)) of U(g) is an algebra homomorphism, and the
composite γ−ρ ◦π : Z(U(g)) → S(h) of π with a “shift” by the Weyl vector ρ is called
theHarish-Chandra homomorphism of U(g). The famous Harish-Chandra isomorphism
theorem says that γ−ρ ◦ π induces an isomorphism from Z(U(g)) to the algebra of W -
invariant polynomials if g is a semisimple Lie algebra or the algebra of W -invariant
supersymmetric polynomials if g is a classical Lie superalgebra. More details can be
found in [7, Chap. 11] for classical Lie algebras, and [8, Sect. 2.2], [35, Chapt. 13] for
classical Lie superalgebras.

Quantum groups, first appearing in the theory of quantum integrable system, were
formalized independently byDrinfeld and Jimbo as certain special Hopf algebras around
1984 [11,24], including deformations of universal enveloping algebras of semisimple
Lie algebras and coordinate algebras of the corresponding algebraic groups. In 1990, by
the aid of the Universal R-matrix, Rosso [38] defined a significant ad-invariant bilinear
form on Uq(g) at a generic value q of the parameter. The form, often referred to as the
Rosso form or quantum Killing form, could also be obtained by using Drinfeld double
construction. Tanisaki [43,44] described this form by skew-Hopf pairing between the
positive part and the negative part of the quantum algebra and obtained the quantum
analogue of the Harish-Chandra isomorphism between Z(Uq(g)) and the subalgebra
of W -invariant Laurent polynomials. As an application, the generators and the defining
relations for Z(Uq(g)) have been obtained in [5,10,33].
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Associated with the generalization of Lie algebras to Lie superalgebras, many re-
searchers have investigated the quantization of universal enveloping superalgebras in re-
cent years. Drinfeld-Jimbo quantum superalgebras [45,51] are a class of quasi-triangular
Hopf superalgebras, depending on the choice of Borel subalgebras, which were intro-
duced in the early 1990s. As a supersymmetric version of quantum groups, quantum
superalgebras have a natural connection with supersymmetric integrable lattice models
and conformal field theories. They have been found applications in various areas, in-
cluding in the study of the solution of quantum Yang-Baxter Eq. [18], construction of
topological invariants of knots and 3-mainfolds [49,50,53] and so on. Quantum super-
algebras have been investigated extensively by many authors in aspects such as Serre
relations, PBW basis, universal R-matrix [45,46], crystal bases [30,31], invariant theory
[32], highest weight representations [15,54,55] and so on.

The following questions for quantum superalgebras are natural and fundamental
comparing to Lie (super)algebras and quantum groups: What is the Harish-Chandra
isomorphism for quantum superalgebras? How to determine the center of quantum su-
peralgebras? The purpose of the present work is to answer these questions.

Let g be a simple basic Lie superalgebra, except for A(1, 1), with root system � =
�0̄ ∪ �1̄, and let U = Uq(g) be the associated quantum superalgebra over k = K (q

1
2 ),

where K is a field of characteristic 0 and q is an indeterminate. TheWeyl group andWeyl

vector are denoted by W and ρ, respectively. Let � =
{
λ ∈ h∗

∣
∣∣ 2(λ,α)

(α,α)
∈ Z, ∀α ∈ �0̄

}

be the integral weight lattice, where h∗ is the dual space of the cartan subalgebra h.
The Cartan subalgebra U0 is the group ring of Z� with basis

{
Kμ

∣∣μ ∈ Z�
}
and

multiplication KμKν = Kμ+ν for all μ, ν ∈ Z�. For each λ ∈ �, we define an
automorphism γλ : U0 → U0 by γλ(Kμ) = q(λ,μ)

Kμ for all μ ∈ Z�.
Let 
 be the simple roots of distinguished borel subalgebra if g = A(n, n) with

n 	= 1, and let Z�̃ be the free abelian group with Z-basis 
. We set

Q =
{

Z�̃, for g = A(n, n),

Z�, otherwise.

Thus, the root system of A(n, n) is Z� = Z�̃/Zγ for some γ . Define the standard
partial order relation on Q by λ � μ ⇔ μ − λ ∈∑i∈I Z+αi .

There is a triangular decompositionU = U−U0U+,whereU− andU+ are the negative
and positive parts of U, respectively. Clearly U, U− and U+ are all Q-graded algebras.
The triangular decomposition implies a direct sum decomposition

U0 = U0 ⊕
⊕

ν>0

U−−νU
0U+

ν ,

where U0 is the component of degree 0 of U, and U+
ν (resp., U−−ν) is the component

of degree ν (resp., −ν) of U+ (resp., U−) for ν > 0. Note that the projection map
π : U0 → U0 is an algebra homomorphism. From now on, we do not make a distinction
between the element in Z� and Q if no confusion emerges.

We observe that the center Z(Uq(g)) of Uq(g) is contained in U0 by Corollary 3.7.
Inspired by the quantum group case, we define theHarish-Chandra homomorphismHC
of Uq(g) to be the composite

HC : Z(Uq(g)) ↪→ U0
π−→ U0 γ−ρ−−→ U0.
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To establish the Harish-Chandra type theorem for quantum superalgebras, we need
to describe the image ofHC. Recall that a root α ∈ � is isotropic if (α, α) = 0, and the
set of isotropic roots is denoted by �iso. Set

(U0
ev)

W
sup =

{ ∑

μ∈2�∩Z�

aμKμ ∈ U0
∣∣
∣∣awμ = aμ, ∀w ∈ W ;

∑

μ∈Aα
ν

aμ = 0, ∀α ∈ �iso with (ν, α) 	= 0

}
,

where Aα
ν = {ν + nα | n ∈ Z} for each ν ∈ � and α ∈ �iso. The notation is consistent

with the one in quantum groups [23, Sect. 6.6] and the one in classical Lie superalgebras
[8, Sect. 2.2.4]. Then the image of HC is contained in (U0

ev)
W
sup, which is essentially

derived from character formulas ofVermamodules and simplemodules ofUq (g), certain
automorphisms of Uq(g) and nontrivial homomorphisms between Verma modules; see
Lemmas 5.2, 5.3, 5.4.

Now we can state our main theorem.

Theorem A. The Harish-Chandra homomorphism HC for the quantum superalgebra
Uq(g) associated to a simple basic Lie superalgebra g induces an isomorphism from
Z(Uq(g)) to (U0

ev)
W
sup.

The Lie superalgebra g = A(1, 1) is very special. The image of HC is contained in
(U0

ev)
W
sup, while whether the HC is surjective is not known to us yet; see Remark 5.8.

We noticed that Batra and Yamane have introduced the generalized quantum group
U (χ, π) associatedwith a bi-characterχ and established aHarish-Chandra type theorem
for describing its (skew) center in [3]. Furthermore, they conjectured a basis of the skew
center of generalized quantum groups indexed by irreducible highest weight modules
[4]. While the quantum superalgebra Uq(s) of a basic classical Lie superalgebra s has
been identified with a subalgebra of Ûσ involving a new generator σ , so does the image
of Harish-Chandra homomorphism (see [3]). It is not known whether one can derive the
Harish-Chandra type theorem for quantum superalgebra Uq(s) from [3].

As an application of Theorem A, we obtain a basis of Z(Uq(g)) by using quasi-R-
matrix.

Theorem B. The center Z(Uq(g)) has a basis, which is constructed by using quasi-R-
matrix and parametrized by

{
λ ∈ � ∩ 1

2Z�
∣∣ dimL(λ) < ∞}, where L(λ) is an irre-

ducible module of Lie superalgebra g with the highest weight λ.

To prove Theorem A, it suffices to prove HC is injective and the image HC is equal
to (U0

ev)
W
sup. For the injectivity, we establish a key Proposition 3.4 by using the character

formula of typical finite-dimensional modules of Uq(g), which is a super version of
Tanisaki’s result for quantum algebras [43, Sect. 3.2].

The difficulty is proving the image of HC is equal to (U0
ev)

W
sup. With the help of the

well-known classical Lie theory of semisimple Lie algebras, one can prove the surjec-
tivity for quantum groups by using induction on the weights. However, the technique
does not apply to quantum superalgebras, where one encounters two main obstacles:

1): There are infinitely many �+
0̄
-dominant weights less than a given �+

0̄
-dominant

weight with respect to the standard partial order if g is of type I.
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2): Besides the condition of the �+
0̄
-dominant integral, an extra condition for the finite-

ness of the dimension of an irreducible g-module L(λ) is that λ satisfies the hook
partition if g is of type II.

We notice that the close connection between K (g), J (g) and K (Uq(g)) will help us
to overcome the obstacles, where K (g) and K (Uq(g)) are the Grothendieck rings of g
and Uq(g), respectively, and J (g) is the ring of Laurent supersymmetric polynomials
(also called ring of exponential super-invariants in [42]). Recall Sergeev and Veselov’s
isomorphism [42] Sch : K (g)

∼−→ J (g), where Sch is the supercharater map, and the
injective algebra homomorphism j : K (g) ↪→ K (Uq(g)) is induced by taking deforma-
tion, which is implicitly given by Geer in [15]. The main ingredient of our proof can be
illustrated in the following commutative diagram:

k ⊗Z K (Uq (g)) k ⊗Z K (g)� �
k⊗Zj��

∼=
k⊗ZSch

����
���

���
��

k⊗ZKev(Uq (g))
� �

������������

�R ���
�

�
�

�
k ⊗Z Kev(g)

� �

�������������
� ���

∼=
���

�
�

�
� k⊗Z J (g)

Z(Uq (g))
HC ��������� (U0

ev)
W
sup = k ⊗Z Jev(g)

� �
ι

���
�

�
�

�

First, we identify (U0
ev)

W
sup with a subring of k⊗Z J (g) by some ι, and the key idea is

to reformulate (U0
ev)

W
sup as k ⊗Z Jev(g), which embeds into k⊗Z J (g) in a natural way;

see Eq. 3.2 and Proposition 5.6. One can prove that under the isomorphism k⊗ZSch, the
ring (U0

ev)
W
sup is isomorphic to k⊗ZKev(g), where Kev(g) is a subring of K (g) consisting

of modules with all weights contained in � ∩ 1
2Z�.

Second, j induces an injection k⊗Z Kev(g) ↪→ k⊗Z Kev(Uq(g)), where Kev(Uq(g))

is the subring of K (Uq(g)) consisting ofmodules with all weights contained in�∩ 1
2Z�.

Third, analogous to quantum groups [23, Chap. 6], [38,44], by using the Rosso
form and the quantum supertrace for quantum superalgebras, we define a linear map
�R : k⊗ZKev(Uq(g)) → Z(Uq(g)); see Proposition 5.7. This involves lengthy compu-
tations and some subtle constructions. We remark that �R is an algebra isomorphism,
but not in an obvious way.

Now the surjectivity ofHC follows from the commutative diagram easily. Moreover,
we show thatHC◦�R is injective, and combinedwith the injectivity ofHC, we can prove
that homomorphisms occurring in the bottom left parallelogram are all isomorphisms
of algebras. Consequently, the restriction j : Kev(g) → Kev(Uq(g)) is an isomorphism.

By definition, k ⊗Z Kev(g) has a basis
{ [L(λ)]| λ ∈ � ∩ 1

2Z�, dim L(λ) < ∞}
and k ⊗Z Kev(Uq(g)) has a basis

{ [Lq(λ)]∣∣ λ ∈ � ∩ 1
2Z�, dim Lq(λ) < ∞}, where

L(λ) and Lq(λ) are the irreducible g-module and the irreducible Uq(g)-module with the
highest weight λ, respectively. We remark that if λ ∈ � ∩ 1

2Z�, then dim L(λ) < ∞
if and only if dim Lq(λ) < ∞. Then the desired basis of Z(Uq(g)) in Theorem B is
obtained by applying the isomorphism �R, and here we rely heavily on an alternating
construction of �R by using quasi-R-matrix as in [17].

The paper is organized as follows: In Sect. 2, we review some basic facts related
to contragredient Lie superalgebras and quantum superalgebras. In Sect. 3, we show
several useful results on representations of quantum superalgebras, which seem to be
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well-known among experts. In particular, we give a super version of a Tanisaki’s result
for quantum superalgebras (see Proposition 3.4), which has been used to prove the
injectivity of HC. In Sect. 4, we recall that the quantum superalgebra can be realized
as a Drinfeld double. As a consequence, a non-degenerate ad-invariant bilinear form on
Uq(g) (Theorem 4.6) is obtained, which serves for proving the surjectivity of HC. In
Sect. 5, first we define the Harish-Chandra homomorphism for quantum superalgebras
and prove its injectivitity. Then we prove that the image ofHC is contained in (U0

ev)
W
sup

and then explicitly describe its image Jev(g), which will be used to prove our main
theorem for quantum superalgebras; see Theorem A. In Sect. 6, we construct an explicit
central element CM associated with each finite-dimensional Uq(g)-module M by using
the quasi-R-matrix of quantum superalgebras. As an application of the Harish-Chandra
theorem, we obtain a basis for the center of quantum superalgebras.

Notations and terminologies:
Throughout this paper, we will use the standard notations Z, Z+ and N that repre-

sent the sets of integers, non-negative integers and positive integers, respectively. The
Kronecker delta δi j is equal to 1 if i = j and 0 otherwise.

We write Z2 = {0̄, 1̄}. For a homogeneous element x of an associative or Lie super-
algebra, we use |x | to denote the degree of x with respect to the Z2-grading. Throughout
the paper, when we write |x | for an element x , we will always assume that x is a homo-
geneous element and automatically extend the relevant formulas by linearity (whenever
applicable). All modules of Lie superalgebras and quantum superalgebras are assumed
to beZ2-graded. The tensor product of two superalgebras A and B carries a superalgebra
structure by

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|a2||b1|a1a2 ⊗ b1b2.

2. Lie Superalgebras and Quantum Superalgebras

2.1. Lie superalgebras. Let g = g0̄ ⊕ g1̄ be a finite-dimensional complex simple Lie
superalgebra of type A-G such that g1̄ 	= 0, and let 
 = {α1, α2, . . . αr }, with r the
rank of g, be the simple roots of g. Also let (A, τ ) be the corresponding Cartan matrix,
where A = (ai j ) is a r × r matrix and τ is a subset of I = {1, 2, . . . , r} determining the
parity of the generators. Kac showed that the Lie superalgebra g(A, τ ) is characterized
by its associated Dynkin diagrams (equivalent Cartan matrix A, and a subset τ ); see
[26]. These Lie superalgebras are called basic. For convenience (see remark 2.3), we
will restrict our attention to the simplest case and only consider root systems related to
a special Borel sub-superalgebra with at most one odd root, called distinguished root
system, denoted by g(A, {s}) or simply g in no confusion. The explicit description of
root systems can be found in Appendix A. The Cartan matrix A is symmetrizable, that
is, there exist non-zero rational numbers d1, d2, . . . dr such that diai j = d ja ji . Without
loss of generality, we assume d1 = 1, since there exists a unique (up to constant factor)
non-degenerate supersymmetric invariant bilinear form (-, -) on g and the restriction of
this form to Cartan subalgebra h is also non-degenerate. Let � be the root system of g,
and denote the sets of even and odd roots, respectively, as �0̄ and �1̄. In order to define
quantum superalgebra associated with a Lie superalgebra g(A, {s}), we first review the
generators-relations presentation of Lie superalgebra g(A, {s}) given by Yamane [46]
and Zhang [57].
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Definition 2.1 [57, Theorem 3.4]. Let (A, {s}) be the Cartan matrix of a contragredient
Lie superalgebra in the distinguished root system. ThenU(g(A, {s})) (simplify for U(g))
is generated by ei , fi , hi (i = 1, 2, . . . r) over C, where es and fs are odd and the rest
are even, subject to the quadratic relations:

[hi , h j ] = 0, [hi , e j ] = ai j e j , [hi , f j ] = −ai j f j , [ei , f j ] = δi j h j , (2.1)

and the additional linear relation
r∑

i=1
Ji hi = 0 if g = A

( r−1
2 , r−1

2

)
for odd r , where J =

(J1, J2, · · · , Jr ) such that J A = 0 (more explicitly, J =
(
1, 2, · · · , r+1

2 ,− r−1
2 ,− r−3

2 ,

· · · ,−1
)
), and the standard Serre relations

e2s = f 2s = 0, if (αs, αs) = 0,

(adei )
1−ai j e j = (ad fi )

1−ai j f j = 0, if i 	= j, with aii 	= 0, or ai j = 0,

and higher order Serre relations

[es, [es−1, [es, es+1]]] = 0, [ fs, [ fs−1, [ fs, fs+1]]] = 0, (2.2)

if the Dynkin diagram of A contains a full sub-diagram of the form

�
s − 1

⊗

s

�
s + 1

, or �
s − 1

⊗

s

> �
s + 1

.

We refer the reader to [57] for undefined terminology and the presentation for each
simple basic Lie superalgebra in an arbitrary root system.

2.2. Quantum superalgebras. Let k = K (q
1
2 ), where K is a field of characteristic 0 and

q is an indeterminate, and we set qi = qdi , then q
ai j
i = q

a ji
j for all i, j = 1, 2, . . . , r .

Set

[
m
n

]

q
=
⎧
⎨

⎩

n∏

i=1

(qm−i+1−qi−m−1)

(qi−q−i )
, if m > n > 0,

1, if n = m, 0.

Definition 2.2 [14,32,45]. Let (A, {s}) be the Cartan matrix of a simple basic Lie super-
algebra g in the distinguished root system. The quantum superalgebra Uq(g) is defined
over k in q generated by K

±1
i , Ei , Fi , i ∈ I (all generators are even except for Es and

Fs , which are odd), subject to the following relations:

KiK j = K jKi , KiK
−1
i = K

−1
i Ki = 1, (2.3)

KiE jK
−1
i = q(αi ,α j )E j , KiF jK

−1
i = q−(αi ,α j )F j , (2.4)

EiF j − (−1)|Ei ||F j |F jEi = δi j
Ki − K

−1
i

qi − q−1
i

, (2.5)

Ad
1−ai j
Ei

(E j ) = 0 for i 	= j with aii 	= 0 or ai j = 0, (2.6)

Ad
1−ai j
Fi

(F j ) = 0 for i 	= j with aii 	= 0 or ai j = 0, (2.7)
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(Es)
2 = (Fs)

2 = 0, if ass = 0, (2.8)

and higher order quantum Serre relations, and

r∏

i=1

K
di Ji
i = 1 if g = A

(
r − 1

2
,
r − 1

2

)
for odd r.

where

AdEi (x) = Ei x − (−1)|Ei ||x |Ki xK
−1
i Ei ; (2.9)

AdFi (x) = Fi x − (−1)|Fi ||x |K−1
i xKiFi . (2.10)

For the distinguished root data [57, Appendix A.2.1], higher order Serre relations appear
if the Dynkin diagram contains a sub-diagram of the following types:

(i) �
s − 1

⊗

s

�
s + 1

, the higher order quantum Serre relations are

EsEs−1,s,s+1 + Es−1,s,s+1Es = 0, FsFs−1,s,s+1 + Fs−1,s,s+1Fs = 0; (2.11)

(ii) �
s − 1

⊗

s

> �
s + 1

, the higher order quantum Serre relations are

EsEs−1;s;s+1 + Es−1;s;s+1Es = 0, FsFs−1;s;s+1 + Fs−1;s;s+1Fs = 0; (2.12)

(iii) �
s − 1

⊗

s

��
��

�s + 1

�s + 2

, the higher order quantum Serre relations are

EsEs−1;s;s+1 + Es−1;s;s+1Es = 0, FsFs−1;s;s+1 + Fs−1;s;s+1Fs = 0,

EsEs−1;s;s+2 + Es−1;s;s+2Es = 0, FsFs−1;s;s+2 + Fs−1;s;s+2Fs = 0; (2.13)

where

Es−1;s; j = Es−1

(
EsE j − q

a js
j E jEs

)
− q

as−1,s
s−1

(
EsE j − q

a js
j E jEs

)
Es−1,

Fs−1;s; j = Fs−1

(
FsF j − q

a js
j F jFs

)
− q

as−1,s
s−1

(
FsF j − q

a js
j F jFs

)
Fs−1.

For the other root data of g, the higher order quantum Serre relations vary considerably
with the choice of the root datum; thus, we will not spell them out explicitly here.

Remark 2.3. The definition of the quantum superalgebra above is dependent on the
choice of the Borel subalgebras. Although the quantum superalgebras defined by non-
conjugacy Borel subalgebras of a Lie superalgebra are not isomorphic as Hopf superal-
gebras, they are isomorphic as superalgebras; see [29] or [47, Proposition 7.4.1].

There is a unique automorphism ω of Uq(g) such that ω(Ei ) = (−1)|Ei |Fi , ω(Fi ) =
Ei and ω(Ki ) = K

−1
i for i ∈ I. The quantum superalgebra Uq(g) has the structure of a

Z2-graded Hopf algebra. The co-multiplication

� : Uq(g) → Uq(g) ⊗ Uq(g)

is given by

�(Ei ) = Ki ⊗ Ei + Ei ⊗ 1, �(Fi ) = 1 ⊗ Fi + Fi ⊗ K
−1
i , �(K±1

i ) = K
±1
i ⊗ K

±1
i ,

(2.14)
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for i ∈ I and the co-unit ε : Uq(g) → k is defined by

ε(Ei ) = ε(Fi ) = 0, ε(K±1
i ) = 1, for i ∈ I,

then the corresponding antipode S : Uq(g) → Uq(g) is given by

S(Ei ) = −K
−1
i Ei , S(Fi ) = −FiKi , S(K±1

i ) = K
∓1
i , for i ∈ I, (2.15)

which is a Z2-graded algebra anti-automorphism, i.e., S(xy) = (−1)|x ||y|S(y)S(x).
Denote by U�0 (resp., U�0) the sub-superalgebra of Uq(g) generated by all Ei , K

±1
i

(resp., Fi , K
±1
i ), set U0 equal to the sub-superalgebra of Uq(g) generated by all K

±1
i ,

and denote by U+ (resp., U−) the sub-superalgebra of Uq(g) generated by all Ei (resp.,
Fi ), it is well-known that U+⊗U0 ∼= U�0 (resp., U−⊗U0 ∼= U�0) by themultiplication
map. And the multiplication mapU−⊗U0⊗U+ → U is an isomorphism as super vector
spaces.

Remark 2.4. Analogous to the quantumgroup, the quantumSerre relations and the higher
order quantumSerre relations can be explained from the view of skew primitive elements
in the quantum superalgebras. For example,

�(u+i j ) = u+i j ⊗ 1 + K
1−ai j
i K j ⊗ u+i j , �(u−

i j ) = u−
i j ⊗ K

ai j−1
i K

−1
j + 1 ⊗ u−

i j ,

�(u+B) = u+B ⊗ 1 + Ks−1K
3
s ⊗ u+B, �(u−

B ) = 1 ⊗ u−
B + u−

B ⊗ K
−1
s−1K

−3
s ,

�(u+) = u+ ⊗ 1 + Ks−1K
2
sK j ⊗ u+, �(u−) = 1 ⊗ u− + u− ⊗ K

−1
s−1K

−2
s K

−1
j .

where u±
i j (resp. u

±
B ) is on the left side of Eqs. (2.6) and (2.7) for i 	= j and even αi

(resp., for non-isotropic odd root αi with ai j 	= 0 for i 	= j), and u± is on the left side
of Eqs. (2.11)-(2.13).

For any μ =
r∑

i=1
miαi ∈ Z�, set Kμ =

r∏

i=1
K

mi
i . Thus, KμKμ′ = Kμ+μ′ for all

μ,μ′ ∈ Z�. Therefore, {Kμ}μ∈Z� spans U0 as a vector space, and

KμEiK
−1
μ = q(μ,αi )Ei , KμFiK

−1
μ = q−(μ,αi )Fi .

The quantum superalgebra Uq(g) is Z�-graded. And the gradation is given by

deg Kμ = 0, deg Ei = αi , deg Fi = −αi ,

for all μ ∈ Z� and i ∈ I. We denote that Uν is the ν ∈ Z�-component if g 	= A(n, n).
Note that if g = A(n, n), the simple roots for distinguished Borel subalgebra are

not linearly independent (that is, γ =
2n+1∑

i=1
di Jiαi = 0). This causes some technical

difficulties. However, the quantum superalgebra Uq(g) is also Z�̃-graded, where Z�̃

is a free abelian group generated by all simple roots α1, α2, · · · , α2n+1. Obviously,
Z� = Z�̃/Zγ .
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Denote U|μ (resp. Uν) as the μ-component (resp. ν-component) with respect to Z�-
gradation (resp. Z�̃-gradation). From now on, we do not make a distinction between
the elements in Z� and Z�̃ if no confusion emerges. Hence, U|μ = ⊕

k∈Z
Uμ+kγ . Set

Q =
{

Z�̃, for g = A(n, n),

Z�, otherwise.

Note that h∗ = C�. If g 	= A(n, n), define the standard partial order relation on h∗
by λ � μ ⇔ μ − λ ∈∑i∈I Z+αi . This breaks down if g = A(n, n) because γ = 0 and
di Ji ∈ Z+ for all i ∈ I. However, we can define a similar partial order on C�̃. From
now on, we will use the partial order on C�̃ if necessary for g = A(n, n).

Remark 2.5. The Lie superalgebra A(n, n) is rather special, and the restriction of the
Harish-Chandra projection determined by the distinguish triangular decomposition to
the zero weight space (with respect to Z�-gradation) is not an algebra homomorphism;
formore details, see [16, Sect. 6.1.4]. For this reason, we do not expect that the projection
from U|0 to U0 is an algebra homomorphism. However, the projection π : U0 → U0

is an algebra homomorphism. Fortunately, we can prove that Z is contained in U0;
see Corollary 3.7. Therefore, we can establish the Harish-Chandra homomorphism for
g = A(n, n).

3. Representation of Quantum Superalgebras

3.1. Representations. We will recall some basic facts about the representation theory
of the quantum superalgebra Uq(g). The bilinear form (-, -) on Z� can be linearly
extended to h∗. For any λ,μ ∈ h∗ with (μ,μ) 	= 0, denote 〈λ,μ〉 = 2(λ,μ)

(μ,μ)
. Let

� = {λ ∈ h∗| 〈λ, α〉 ∈ Z, ∀α ∈ �0̄

}
be the integral weight lattice, and denote by�+ ={

λ ∈ h∗| 〈λ, α〉 ∈ Z+, ∀α ∈ �+
0̄

}
the set of �+

0̄
-dominant integral weights.

A Uq(g)-module M is called a weight module if it admits a weight space decompo-
sition

M =
⊕

λ∈h∗
Mλ, where Mλ =

{
u ∈ M | Ki u = q(λ,αi )u, ∀i ∈ I

}
. (3.1)

In this paper, all module are weight module and type 1. Denote by wt(M) the set of
weights of the finite-dimensional Uq(g)-module M . A weight module M is called a
highest weight modulewith the highest weight λ if there exists a unique non-zero vector
vλ ∈ M , which is called a highest weight vector such that Kivλ = q(λ,αi ), Eivλ = 0
for all i ∈ I and M = Uq(g)vλ.

Let Jλ =
r∑

i=1
Uq(g)Ei +

r∑

i=1
Uq(g)(Ki − q(λ,αi )) for λ ∈ �, and set �q(λ) =

Uq(g)/Jλ. This is a Uq(g)-module generated by the coset of 1; also denote this coset
by vλ. Obviously, Eivλ = 0 and Kivλ = q(λ,αi )vλ for i ∈ I. We call �q(λ) the Verma
module of the highest weight λ. It has the following universal property: If M is a Uq(g)-
module and v ∈ Mλ with Eiv = 0 for all i ∈ I, then there is a unique homomorphism
of Uq(g)-modules ϕ : �q(λ) → M with ϕ(vλ) = v. The Verma module �q(λ) has a
uniquemaximal submodule, thus,�q(λ) admits a unique simple quotient Uq(g)-module
Lq(λ).
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Lemma 3.1. Let λ ∈ � with (λ, αs) = 0. Then there is a homomorphism of Uq(g)-
modules ϕ : �q(λ − αs) → �q(λ) with ϕ(vλ−αs ) = Fsvλ.

Proof. We have Fsvλ ∈ �q(λ)λ−αs . Therefore, the universal property of �q(λ − αs)

implies that it is enough to show thatE jFsvλ = 0 for all j ∈ I. This is obvious for j 	= s
because E j and Fs commute. For j = s, we have EsFsvλ = [Es, Fs]vλ − FsEsvλ =
Ks−K

−1
s

qs−q−1
s

vλ − 0 = 0. ��
The finite-dimensional irreducible representations of Uq(g) can be classified into

two types: typical and atypical. The representation theory of Uq(g) at generic q is rather
similar to the Lie superalgebra g, as well. Geer proved the theorem that each irreducible
highest weight module of a Lie superalgebra of Type A-G can be deformed to an irre-
ducible highest weight module over the corresponding Drinfeld-Jimbo algebra; see [15,
Theorem 1.2]. We also refer to [54, Proposition 3], [55, Proposition 1] and [30, Theo-
rem 4.2] for quantum superalgebras of type Uq(glm|n), Uq(osp2|2n) and Uq(ospm|2n),
respectively.

Theorem 3.2. For λ ∈ h∗, let L(λ) be the irreducible highest weight module over g
of highest weight λ. Then there exists an irreducible highest weight module Lq(λ) of
highest weight λ which is a deformation of L(λ). Moreover, the classical limit of Lq(λ)

is L(λ), and their (super)characters are equal 1.

3.2. Grothendieck ring. Let A-mod be the category of finite-dimensional modules of a
Hopf superalgebra A over k. There is a parity reversing functor on this category. For an
A-module M = M0̄ ⊕ M1̄, define


(M) = 
(M)0̄ ⊕ 
(M)1̄, 
(M)i = 
(M)i+1̄, ∀i ∈ Z2.

Then 
(M) is also an A-module with the action am = (−1)|a|m. Let kπ be a 1-
dimensional odd vector space with basis {π}, then kπ can be views as a trivial A-module
and 
(M) ∼= kπ ⊗ M as A-modules. Define the Grothendieck group K (A) of A-mod
to be the abelian group generated by all objects in A-mod subject to the following two
relations: (i) [M] = [L]+ [N ]; (ii) [
(M)] = −[M], for all A-modules L , M, N which
satisfying a short exact sequence 0 → L → M → N → 0 with even morphisms.

It is easy to see that the Grothendieck group K (A) is a free Z-module with the basis
corresponding to the classes of the irreducible modules. Furthermore, if A is a Hopf
superalgebra, then for any A-modules M and N , one can define the A-module structure
on M ⊗ N . Using this, we define the product on K (A) by the formula

[M][N ] = [M ⊗ N ].
Since all modules are finite-dimensional, this multiplication is well-defined on the

Grothendieck group K (A) and introduces the ring structure on it. The corresponding ring
is called theGrothendieck ring of A. The Grothendieck ring of U(g) is denoted by K (g).
Let Kev(g) (resp. Kev(Uq(g))) be the subring of K (g) (resp. K (Uq(g))) generated by
all objects in U(g)-mod (resp. Uq(g)-mod), whose weights are contained in � ∩ 1

2Z�.

1 However, the inverse of the theorem is not true in general [2]. For example, there are many finite-
dimensional irreducible modules (spinorial modules) of quantum superalgebras of type Uq (osp1|2) without
classical limit; see [52] for more details.
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Let M be a finite-dimensional representation of g or Uq(g). We define the character
map and the supercharacter map as:

ch(M) =
∑

λ

dimMλe
λ, Sch(M) =

∑

λ

sdimMλe
λ,

where sdim is the superdimension defined for anyZ2-graded vector spaceW = W0⊕W1
as the difference of usual dimensions of graded components: sdimW = dimW0−dimW1.

Proposition 3.3. There is an injective ring homomorphism j : K (g) → K (Uq(g)),
which preserves (super)characters.

Proof. By Theorem 3.2, we can define j ([L(λ)]) = [Lq(λ)] for all finite-dimensional
irreducible g-modules L(λ). This then induces an abelian group homomorphism from
K (g) to K (Uq(g)). The map preserves (super)characters, so j is a ring homomorphism.
Suppose there exist nonzero ai ∈ Z and distinct λi ∈ h∗ for i = 1, 2 · · · , n such
that j (

∑n
i=1 ai [L(λi )]) = 0. Then Sch(

∑n
i=1 ai [L(λi )]) = 0. Choose λ j maximal in

{λi ∈ h∗|i = 1, 2, · · · , n} for some j , then a j = 0 since dim(L(λi ))λ j = δi j . This
contradicts a j 	= 0. Thus,

∑n
i=1 ai [L(λi )] = 0. ��

Sergeev and Veselov proved that the Grothendieck ring K (g) is isomorphic to the

ring of exponential super-invariants J (g) =
{

f ∈ Z[P0]W0
∣∣ Dα f ∈ (eα − 1) for any

isotropic root α
}
for g 	= A(1, 1), where Dα(eλ) = (λ, α)eλ,

{
eλ
∣
∣ λ ∈ P0

}
is a Z-free

basis of Z[P0], and here P0 = � and W0 = W , more details could be found in [42].
Set

Jev(g) =
{ ∑

μ∈2�∩Z�

aμKμ ∈ U0
∣∣
∣∣awμ = aμ, ∀w ∈ Waμ ∈ Z, ∀μ; Dα(u) ∈ (K2

α − 1), ∀α ∈ �iso

}
,

(3.2)

where Dα(Kμ) = (μ, α)Kμ.
Obviously, there is an injective homomorphism ι : Jev(g) → J (g) with ι(Kμ) =

e−μ/2. This induces an isomorphism from Kev(g) to Jev(g), hence we have the following
commutative diagram:

K (Uq(g)) K (g)� �
j�� ∼=

Sch
�� J (g)

Kev(Uq(g))
��

��

Kev(g)
��

��

� ��� ∼= ������� Jev(g)
��

ι

���
�
�

We remark that the above diagram is not true for g = A(1, 1). In Appendix B, we
describe Jev(g) in sense of Sergeev and Veselov [42] and illustrate why Kev(g) � Jev(g)
if g = A(1, 1).
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3.3. Some important propositions. In this subsection, we investigate some important
propositions, which show that the center of Uq(A(n, n)) is contained in U0 and will be
used to prove the injectivity of HC.

If g is of type II, there exists a unique δ ∈ �+
0̄
such that (
\{αs})∪{δ} is a simple root

system of �+
0̄
. By writing δ =

r∑

i=1
ciαi , we can get cs = 2. The following proposition

is a super version of [43, Sect. 3.2] for quantum superalgebra Uq(g) associated with a
simple basic Lie superalgebra.

Proposition 3.4. Setβ =
r∑

i=1
miαi ∈ Z+
, and let Lq(λ) be a typical finite-dimensional

irreducible module. Suppose λ satisfies

(i) 〈λ, αi 〉 � mi for all i 	= s;
(ii) an extra condition 2〈λ + ρ, δ〉 � ms + 1 when g is of type II, then U

−
−β → Lq(λ)λ−β

with u �→ uvλ is bijective.

Proof. In the proof of this proposition, we choose λ ∈ C⊗Z Q since the Verma module
and simple module can be viewed as Q-graded modules. Notice that the partial order is
well-defined on Q.

The canonical map from �q(λ) to Lq(λ) is surjective, which follows that every
finite-dimensional irreducible module is a quotient of a Verma module. So we only
need to prove dim�q(λ)λ−β = dimLq(λ)λ−β , since dimU−

−β = dim�q(λ)λ−β . The

dim�q(λ)λ−β is the coefficient of eλ−β in ch�q(λ), and dimLq(λ)λ−β is the coefficient
of eλ−β in chLq(λ).

The following character formulas of a Vermamodule and a typical finite-dimensional
irreducible Uq(g)-module with the highest weight λ are given by [27, Theorem 1] and
Theorem 3.2:

ch�q(λ) =

α∈�+

1̄
(1 + e−α)


β∈�+
0̄
(1 − e−β)

eλ,

chLq(λ) =

α∈�+

1̄
(1 + e−α)


β∈�+
0̄
(1 − e−β)

∑

w∈W
(−1)l(w)ew(λ+ρ)−ρ.

Hence, it is sufficient to show w(λ + ρ) − ρ − (λ − β) /∈ Z+
 for all w 	= 1. Let us
prove it by induction on l(w).

If g is of type I and l(w) = 1, then we have w = si for some i 	= s, and hence

w(λ + ρ) − ρ − (λ − β) = −(〈λ, αi 〉 + 1)αi + β /∈ Z+
.

Assume that l(w) � 2. There exists some j 	= s and w′ ∈ W such that w = s jw′ with
l(w′) = l(w) − 1, and then it is known that w′−1(α j ) ∈ �+

0̄
. We have

w(λ + ρ) − ρ − (λ − β) = w′(λ + ρ) − ρ − (λ − β) − 〈λ + ρ,w′−1(α j )〉α j ,

w′(λ + ρ) − ρ − (λ − β) /∈ Z+
 by induction and 〈λ + ρ,w′−1(α j )〉 � 0 since λ + ρ is
�+

0̄
-dominant, so w(λ + ρ) − ρ − (λ − β) /∈ Z+
 for all w 	= 1.
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If g is of type II and l(w) = 1, then we have w = si for some i 	= s or w = sδ . By
the same argument as above, we only need to consider w = sδ . Indeed,

w(λ + ρ) − ρ − (λ − β) = −〈λ + ρ, δ〉δ + β

=
r∑

i=1

(−〈λ + ρ, δ〉ci + mi )αi /∈ Z+


since cs = 2 and 2〈λ + ρ, δ〉 � ms + 1. Assume l(w) � 2. There exists some j 	= s and
w′ ∈ W such that w = s jw′ or w = sδw′ with l(w′) = l(w) − 1. Then it is known that
w′−1(α j ) or w′−1(δ) belongs to �+

0̄
. The proof is similar to type I when w = s jw′, so

we omit it here. If w = sδw′, then

w(λ + ρ) − ρ − (λ − β) = w′(λ + ρ) − ρ − (λ − β) − 〈λ + ρ,w′−1(δ)〉δ.
Once again, w′(λ + ρ) − ρ − (λ − β) /∈ Z+
 by induction and 〈λ + ρ,w′−1(α j )〉 � 0
since λ + ρ is �+

0̄
-dominant, so w(λ + ρ) − ρ − (λ − β) /∈ Z+
 for all w 	= 1. ��

Let λ ∈ � be a typical weight such that Lq(λ) is finite-dimensional, then we can
define a twisted action on Lq(λ) via the automorphism ω of Uq(g), denoted by Lω

q (λ).

Set vλ by v′
λ when considered as an element of Lω

q (λ). We then have Kμv′
λ = q−(μ,λ)v′

λ

for all μ ∈ Z�. Furthermore, we have Fiv
′
λ = 0 for all i ∈ I, and x �→ xv′

λ maps each
U+

ν onto Lω
q (λ)−λ+ν .

Similarly, if 〈λ, αi 〉 � mi , ∀i 	= s and λ satisfies an extra condition 2〈λ + ρ, δ〉 �
ms + 1 for g is of type II, then the map U+

ν → Lω
q (λ)−λ+ν with x �→ xv′

λ is bijective.

Theorem 3.5. Let u ∈ U. If u annihilates all finite-dimensionalU-modules, then u = 0.

Proof. For any typical weights λ, λ′ ∈ � such that Lq(λ) and Lω
q (λ′) are finite-

dimensional, the tensor product Lq(λ) ⊗ Lω
q (λ′) is also a finite-dimensional Uq(g)-

module. Suppose that u ∈ Uq(g) annihilates all these tensor products, in particular
u(vλ ⊗ v′

λ′) = 0 for all λ and λ′. We show that this implies u = 0.
Choose bases (xi )i ofU+ and (y j ) j ofU− consisting of homogeneousweight vectors,

say xi ∈ U+
ν(i) and y j ∈ U−

−ν′( j) with ν(i) and ν′( j) in Z+
. Write

u =
∑

j

∑

μ

∑

i

a j,μ,i y jKμxi

with a j,μ,i ∈ k, which is a finite sum. Suppose that u 	= 0. Let ν0 ∈ Z+
 be maximal
among the weights ν such that there exist i, μ, j with a j,μ,i 	= 0 and ν = ν(i).

So we have

Kμxi (vλ ⊗ v′
λ′) = q(ν(i),λ)+(μ,λ−λ′+ν(i))vλ ⊗ xiv

′
λ′ .

Each �(y j ) is equal to y j ⊗ K
−1
ν′( j) plus a sum of terms in U− ⊗ U0U−

<0. This implies
that

y jKμxi (vλ ⊗ v′
λ′) = q(ν(i),λ)+(μ,λ−λ′+ν(i))−(ν′( j),−λ′+ν(i))y jvλ ⊗ xiv

′
λ′ + (∗),

where (∗) is a sum of terms from a certain Lq(λ) ⊗ Lω
q (λ′)−λ′+ν with ν 	= ν(i).
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The maximality of ν0 implies that y jKμxi (vλ ⊗ v′
λ′) has a component in Lq(λ) ⊗

Lω
q (λ′)−λ′+ν0 only for ν(i) = ν0. Therefore, the projection of u(vλ ⊗ v′

λ′) onto Lq(λ) ⊗
Lω
q (λ′)−λ′+ν0 is equal to

∑

j,μ,i;ν(i)=ν0

a j,μ,i q
(ν0,λ)(μ,λ−λ′+ν0)−(ν′( j),−λ′+ν0)y jvλ ⊗ xiv

′
λ′ , (3.3)

since we assume that u(vλ ⊗ v′
λ′) = 0, this projection is also equal to 0.

We can find an integer N > 0 such that

ν0 <
∑

α∈


Nα and ν′( j) <
∑

α∈


Nα

for all j . Set

�+
N =
{
λ ∈ �

∣∣∣∣
λ is typical, Lq(λ) is finite-dimensional, 〈λ, αi 〉 > N for all i 	= s
and plus an extra condition 2〈λ + ρ, δ〉 > N + 1 if g is of type II

}
.

By the same argument before the proposition,we know that themapU+
ν0

→ Lω
q (λ′)λ′−ν0 ,

x �→ xv′
λ′ is bijective for all λ′ ∈ �+

N . Thus, the elements xiv′
λ′ with ν(i) = ν0

are linearly independent. Therefore, the vanishing of the sum in (3.3) implies (for all
λ′ ∈ �+

N )

∑

j,μ

a j,μ,i q
(ν0,λ)+(μ,λ−λ′+ν0)−(ν′( j),−λ′+ν0)y jvλ = 0, (3.4)

for all i with ν(i) = ν0.
The statement before this theorem implies that all y jvλ with nonzero coefficients

a j,μ,i occurring in (3.4) are linearly independent for all λ ∈ �+
N . So we get from (3.4)

∑

μ

a j,μ,i q
(ν0,λ)+(μ,λ−λ′+ν0)−(ν′( j),−λ′+ν0) = 0, (3.5)

for all i, j with ν(i) = ν0. We can cancel the (nonzero) factor q(ν0,λ)−(ν′( j),−λ′+ν0) in
(3.5), which does not depend on μ, and get

∑

μ

a j,μ,i q
(μ,ν0−λ′)q(μ,λ) = 0, (3.6)

for all i, j with ν(i) = ν0 and all λ, λ′ ∈ �+
N . Now, fix λ′ and notice that (-, -) on

Z� × �+
N is non-degenerate in the first component for all N , thus the coefficients

a j,μ,i q(μ,ν0−λ′) in (3.6) are all equal to 0. This implies that a j,μ,i = 0 for all i, j, μ with
ν(i) = ν0, contradicting the choice of ν0. Therefore, u = 0. ��

One can check Proposition 3.4 and Theorem 3.5 hold if g = A(n, n) since Z�̃ has a
partial order. Next, we strengthen Theorem 3.5 for g = A(n, n).

Theorem 3.6. Let u ∈ Uq(A(n, n)). If u annihilates all typical finite-dimensional irre-
ducible Uq(A(n, n))-modules, then u = 0.
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Proof. It is known that if a typical irreducible module Lq(λ) is a composition factor of
a finite-dimensional module M , then Lq(λ) is a direct summand of M [16, Sect. 3.2].
By the proof of Theorem 3.5, we only need to prove the following claim.

For all N > n, there exists λ ∈ �+
N such that the set

{
λ′ ∈ �+

N

∣
∣ Lq(λ) ⊗ Lω

q (λ′) is completely reducible
}

could linearly span h∗.
If it is true, then Lq(λ) ⊗ Lω

q (λ′) is completely reducible if all weights in λ +

wt
(
Lω
q (λ′)
)
are typical. Because the composition factors of Lq(λ) ⊗ Lω

q (λ′) are the

form of Lq(λ̄) with λ̄ ∈ λ + wt
(
Lω
q (λ′)
)
[39, Corollary 5.2].

Proof of the claim. Let λ̃ =
n+1∑

i=1

(
(n+1− i)(N +2)+2

)
εi −

n∑

j=1
( j−1)(N +2)δ j −(nN +

4n+2)δn+1 ∈ �+
N+1. Then λ̃+αi ∈ �+

N for all i ∈ I. There exists a positive integer κ such
that it is bigger than±(μ, ε j ) and±(μ, δk) for anyμ ∈ wt

(
Lω
q (λ̃+αi )

)
with i ∈ I, j, k =

1, 2, · · · , n + 1. Let a = 8κ and λ =
n+1∑

i=1
(n + 5

2 − i)aεi −
n∑

j=1
jaδ j − 3(n+1)

2 aδn+1 ∈ �.

Then λ ∈ �+
N and λ + μ are typical weights for all μ ∈ wt

(
Lω
q (λ̃ + αi )

)
with i ∈ I. So

Lq(λ) ⊗ Lω
q (λ̃ + αi ) are completely reducible for all i ∈ I. Since {λ̃ + αi |i ∈ I} could

linearly span h∗, the claim holds. ��
Corollary 3.7. The Center Z(Uq(g)) is contained in U0.

Proof. If g 	= A(n, n), note that Z(Uq(g)) is Z�-graded since Uq(g) is Z�-graded.
Assuming that Z(Uq(g)) ∩ Uq(g)ν 	= 0 for some ν ∈ Z�, we will show that ν = 0.
Pick 0 	= z ∈ Z(Uq(g)) ∩ Uq(g)ν . Then z = Ki zK

−1
i = q(ν,αi )z for all i ∈ I; hence

(ν, αi ) = 0 for all i ∈ I, and ν = 0 since (-, -) is non-degenerate.
For g = A(n, n), the quantum superalgebra Uq(g) is Z�̃-graded. Similar to the

argument above, if Z(Uq(g)) ∩ Uq(g)ν 	= 0 with ν ∈ Z�̃, then ν is contained in the
radical of (-, -). Thus, ν = kγ for some k ∈ Z. We need to prove k = 0. Otherwise
assume k 	= 0. Let M be an arbitrary finite-dimensional irreducible module with the
highest weight λ and highest weight vector vλ and lowest weight λ′ and lowest weight
vector vλ′ . Then zvλ ∈ Mλ+kγ = 0 if k > 0 since kγ > 0. Furthermore, zvλ′ ∈
Mλ′+kγ = 0 if k < 0 since kγ < 0. Thus zM = 0 and hence z = 0 by Theorem 3.6,
which contradicts the choice of z. ��
Remark 3.8. It is not known to us whether the projection from U|0 to U0 is an algebra
homomorphism or not, see Remark 2.5. However, the projection π from U0 to U0 is an
algebra homomorphism, thenHC is an algebra homomorphismautomatically.Moreover,
Corollary 3.7 is also crucial in our proof of the injectivity of HC which relies on the
decomposition U0 = ⊕

ν�0
U−−νU

0U+
ν , see Lemma 5.1.

4. Drinfeld Double and Ad-Invariant Bilinear Form

4.1. The Drinfeld double. In order to establish the Harish-Chandra homomorphism for
quantum superalgebras, we need to construct the quantumKilling formorRosso form for
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quantum superalgebras. Our approach to obtaining this takes advantage of the Drinfeld
double for Z2-graded Hopf algebras [18].

Definition 4.1. A bilinear mapping ( , ) : B × A �→ k is called a skew-pairing of the
Z2-graded Hopf algebras A and B over k if for all a, a′ ∈ A and b, b′ ∈ B we have

(b, 1) = ε(b), (1, a) = ε(a),

(bb′, a) = (−1)|b′||a(1)|∑(b, a(1))(b
′, a(2)), (b, aa′) =

∑
(b(1), a

′)(b(2), a). (4.1)

Proposition 4.2. ([18, Proposition4])LetAandB beZ2-gradedHopf algebras equipped
with a skew-pairing ( , ) : B ×A �→ k. Then the vector space A⊗ B becomes a super-
algebra with multiplication defined by

(a ⊗ b)(a′ ⊗ b′) =
∑

(−1)(|a
′
(1)|+|a′

(2)|)(|b(2)|+|b(3)|)(S(b(1)), a
′
(1))(b(3), a

′
(3))aa

′
(2) ⊗ b(2)b

′,
(4.2)

for a, a′ ∈ A and b, b′ ∈ B. With the tensor product co-algebra and antipode S(a⊗b) =
(−1)|a||b|(1⊗ S(b))(S(a)⊗1) structure ofA⊗B, this superalgebra is also aZ2-graded
Hopf algebra, called the Drinfeld double of A and B and denoted it by D(A,B).

The existence of a dual pairing of U�0 and (U�0)op was observed by Drinfeld [11].
In our exposition, we followed Tanisaki [44, Proposition 2.1.1] for quantum groups and
Lehrer, Zhang, Zhang [32, Sect. 3] for quantum superalgebra Uq(glm|n). We have the
following proposition.

Proposition 4.3. There is a unique non-degenerate skew-pairing between theZ2-graded
Hopf algebras U�0 and U�0 with

(Ki , K j ) = q−(αi ,α j ), (Fi , E j ) = −δi j
1

qi − q−1
i

and (Ki , E j ) = 0, (Fi , K j ) = 0.

(4.3)

Proof. The skew-pairing is well-defined follows from [14] or Remark 2.4, and the non-
degeneracy of skew-pairing can be obtained from the following: forμ ∈ Z�withμ > 0
and u ∈ U−−μ with [Ei , u] = 0 for all i ∈ I, then u = 0. Similarly, if u ∈ U+

μ with
[Fi , u] = 0 for all i ∈ I, then u = 0. The fact can be proven in a similar way to
Lemma 5.1, which we omit here. ��
Remark 4.4. Geer [14] extended Lusztig’s [34] results to the Etingof-Kazhdan quantiza-
tion of Lie superalgebras UDJ

h (g) and checked directly that the extra quantum Serre-type
relations are in the radical of the bilinear form. Indeed, the radical of the bilinear form
is generated by the extra quantum Serre-type relations and higher order Serre relations.

Corollary 4.5. As a superalgebra,D(U�0,U�0) is generated by elementsEi , Ki , K
−1
i ,

Fi , K
′
i , K

′−1
i . The defining relations are the relations for the generators Ei , Ki , K

−1
i ,

(resp. , Fi , K
′
i , K

′−1
i ) of the superalgebra U�0 (resp. U�0), and the following cross

relations:

K
′
iE jK

′−1
i = q(αi ,α j )E j , KiF jK

−1
i = q−(αi ,α j )F j , (4.4)

KiK
′
j = K

′
jKi , EiF j − (−1)|Ei ||F j |F jEi = δi j

Ki − K
′−1
i

qi − q−1
i

. (4.5)
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It is known [14,18] that the sub-superalgebras U�0 and U�0 of the quantum su-
peralgebras Uq(g) form a skew-pairing, and Uq(g) is a quotient of quantum double
of D(U�0,U�0). More precisely, we set I to be the two-sided ideal generated by the
elements Ki − K

′−1
i , which is also a Z2-graded Hopf ideal, and we have canonical iso-

morphism D(U�0,U�0)/I ∼= Uq(g) as Z2-graded Hopf algebras. Recently, Drinfeld
doubles have been studied by various authors as a useful tool to recover the quantum
groups (see, e.g., [6,12,13,20–22]).

4.2. Rosso form. Now we can define an ad-invariant and non-degenerate bilinear form
on quantum superalgebras by using skew-pairing between U�0 and U�0.

Theorem 4.6. Define a bilinear form 〈 , 〉 : Uq(g) × Uq(g) → k by

〈(yKν)Kλx, (y
′
Kν′)Kλ′x ′〉 = (−1)|y|(y′, x)(y, x ′)q(2ρ,ν)q−(λ,λ′)/2

, (4.6)

for x ∈ U+
μ, x ′ ∈ U+

μ′ , y ∈ U−−ν, y
′ ∈ U−

−ν′ , λ, λ′ ∈ Z� and μ,μ′, ν, ν′ ∈ Q. The

bilinear form is ad-invariant, i.e., 〈ad(u)v, v′〉 = (−1)|u||v|〈v, ad(S(u))v′〉.
By the use of the duality pairing, Tanisaki [44] described the Killing form of the

quantum algebra, which is first constructed by Rosso [38], then used it to investigate the
center of quantum algebra. Similar techniques could be applied in the case when g is
a Lie superalgebra of type A-G. Perhaps the proof of this theorem is known by several
specialists, but it seems difficult to find in the existing literature. It is fundamental to
prove the surjectivity of Harish-Chandra homomorphism throughout this paper, so we
write down the details to make the paper more accessible. Here we need some tedious
computations, which are also essential for Sect. 6.

For x ∈ U+
μ and y ∈ U−−μ, we know �(x) ∈ ⊕

0�ν�μ

U+
μ−νKν ⊗ U+

ν and �(y) ∈
⊕

0�ν�μ

U−−ν ⊗ U−
−(μ−ν)K

−1
ν , thus for each αi ∈ 
, we can define elements ri (x), r ′

i (x)

in U+
μ−α and ri (y), r ′

i (y) in U
−
−(μ−α) to satisfy the following equations:

�(x) = x ⊗ 1 +
r∑

i=1

ri (x)Ki ⊗ Ei + · · · = Kμ ⊗ x +
r∑

i=1

EiKμ−αi ⊗ r ′
i (x) + · · · , and

�(y) = y ⊗ K
−1
μ +

r∑

i=1

ri (y) ⊗ FiK
−1
μ−αi

+ · · · = 1 ⊗ y +
r∑

i=1

Fi ⊗ r ′
i (y)K

−1
αi

+ · · · .

Then for all x ∈ U+
μ, x ′ ∈ U+

μ′ and y ∈ U−, we have

ri (xx
′) = xri (x

′) + (−1)|Ei ||x ′|q(μ′,αi )ri (x)x
′,

r ′
i (xx

′) = (−1)|x ||Ei |q(μ,αi )xr ′
i (x

′) + r ′
i (x)x

′,
(Fi y, x) = (−1)|r ′

i (x)||Ei |(Fi , Ei )(y, r
′
i (x)),

(yFi , x) = (−1)|Fi ||ri (x)|(Fi , Ei )(y, ri (x)).
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Similarly, for all y ∈ U−−μ, y′ ∈ U−
−μ′ and x ∈ U+, we have

ri (yy
′) = q(μ,αi )yri (y

′) + (−1)|Fi ||y′|ri (y)y′,
r ′
i (yy

′) = (−1)|y||Fi |yr ′
i (y

′) + q(μ′,αi )r ′
i (y)y

′,
(y, Ei x) = (Fi , Ei )(ri (y), x),

(y, xEi ) = (Fi , Ei )(r
′
i (y), x).

Thus, we have the following lemma.

Lemma 4.7. For all x ∈ U+
μ and y ∈ U−−μ, we have

[x, Fi ] = xFi − (−1)|x ||Fi |Fi x = (qi − q−1
i )−1(ri (x)Ki − (−1)|r ′

i (x)||Fi |K−1
i r ′

i (x)
)
,

(4.7)

[Ei , y] = Ei y − (−1)|y||Ei |yEi = (qi − q−1
i )−1((−1)|Ei ||ri (y)|Ki ri (y) − r ′

i (y)K
−1
i

)
.

(4.8)

Proof. We only prove Eqs. (4.8), and (4.7) is similar. For y = 1 and y = Fi the formula
follows from definition, so it is enough to show that if Eq. (4.8) holds for y ∈ U−−μ and
y′ ∈ U−

−μ′ , then Eq. (4.8) holds for yy′. This can be derived as follows.

(qi − q−1
i )[Ei , yy

′] = (qi − q−1
i )
([Ei , y]y′ + (−1)|Ei ||y|y[Ei , y

′])

= (−1)|Ei ||ri (y)|(Ki ri (y) − r ′
i (y)K

−1
i

)
y′

+ (−1)|Ei ||y|y
(
(−1)|Ei ||ri (y′)|

Ki ri (y
′) − r ′

i (y
′)
)
K

−1
i

= (−1)|Ei ||ri (yy′)|
Ki
(
(−1)|Ei ||y′|ri (y)y′ + q(μ,αi )yri (y

′)
)

− (q(μ′,αi )r ′
i (y)y

′ + (−1)|Ei ||y|yr ′
i (y

′)
)
K

−1
i

= (−1)|Ei ||ri (yy′)|
Ki ri (yy

′) − r ′
i (yy

′)K−1
i .

��
Combining the above lemma, we get the following equations, which are very useful

when proofing Theorem 4.6.

ad(Ei )(yKλx) = Ei yKλx − (−1)|Ei |(|x |+|y|)
Ki yKλxK

−1
i Ei

= [Ei , y]Kλx + (−1)|y||Ei |yEiKλx − (−1)|Ei |(|x |+|y|)
Ki yKλxK

−1
i Ei

= (qi − q−1
i )−1((−1)|Ei ||ri (y)|Ki ri (y)Kλx − r ′

i (y)K
−1
i Kλx

)

+ (−1)|y||Ei |q(λ,−αi )yKλEi x − (−1)|Ei |(|x |+|y|)q(μ−ν,αi )yKλxEi

= (qi − q−1
i )−1((−1)|Ei ||ri (y)|q(ν−αi ,−αi )ri (y)Kλ+αi x − r ′

i (y)Kλ−αi x
)

+ (−1)|y||Ei |q(λ,−αi )yKλEi x − (−1)|Ei |(|x |+|y|)q(μ−ν,αi )yKλxEi .

Now, we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. It is enough to take u to be generators, i.e., Ei , Fi and Ki . Fur-
thermore, we may assume that

v = (yKν)Kλx and v′ = (y′
Kν′)Kλ′x ′,
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with λ, λ′ ∈ Z� and x ∈ U+
μ, x ′ ∈ U+

μ′ , y ∈ U−−ν, y
′ ∈ U−

−ν′ with weightsμ,μ′, ν, ν′ ∈
Q.

It is obvious for u = Ki . For u = Ei , then

ad(Ei )(v) = (qi − q−1
i )−1((−1)|Ei ||ri (y)|q(ν−αi ,−αi )ri (y)Kλ+ν+αi x − r ′

i (y)Kλ+ν−αi x
)

+ (−1)|y||Ei |q(λ+ν,−αi )yKλ+νEi x

− (−1)|Ei |(|x |+|y|)q(μ−ν,αi )yKλ+νxEi , and

ad(S(Ei ))(v
′) = −ad(K−1

i )ad(Ei )(v
′) = −q(μ′+αi−ν′,−αi )ad(Ei )(v

′)

= (qi − q−1
i )−1(− (−1)|Ei ||ri (y′)|q(μ′,−αi )ri (y

′)Kλ′+ν′+αi x
′

+ q(μ′+αi−ν′,−αi )r ′
i (y

′)Kλ′+ν′−αi x
′)

− (−1)|y′||Ei |q(λ′+μ′+αi ,−αi )y′
Kλ′+ν′Ei x

′

+ (−1)|Ei |(|x ′|+|y′|)q(αi ,−αi )y′
Kλ′+ν′ x ′

Ei .

Now the problem can be split into two cases. First, if μ = ν′ and μ′ + αi = ν, then

〈ad(Ei )v, v′〉 = (−1)|ri (y)|(qi − q−1
i )−1(y′, x)q(2ρ,v−αi ),

· ((−1)|Ei ||ri (y)|q(v−αi ,−αi )−1/2(λ+2αi ,λ′)(ri (y), x
′) − q−1/2(λ,λ′)(r ′

i (y), x
′)
)
,

and

〈v, ad(S(Ei ))v
′〉 = (−1)|y|(y′, x)q(2ρ,ν)

(−(−1)|y′||Ei |q(λ′+μ′+αi ,−αi )−1/2(λ,λ′)(y, Ei x
′)

+ (−1)|Ei |(|x ′|+|y′|)q(αi ,−αi )−1/2(λ,λ′)(y, x ′
Ei )
)
.

Therefore, 〈ad(Ei )v, v′〉 = (−1)|Ei ||v|〈v, ad(S(Ei ))v
′〉.

Second, if μ + αi = ν′ and μ′ = ν, then

〈ad(Ei )v, v′〉 = (−1)|y|q(2ρ,ν)(y, x ′) · ((−1)|y||Ei |q(λ+ν,−αi )−1/2(λ,λ′)

· (y′, Ei x) − (−1)|Ei |(|x |+|y|)q(μ−ν,αi )−1/2(λ,λ′)(y′, xEi )
)
,

and

〈v, ad(S(Ei ))v
′〉 = (−1)|y|(qi − q−1

i )−1q(2ρ,ν)(y, x ′)
· (− (−1)|Ei ||ri (y′)|q(μ′,−αi )−1/2(λ,λ′+2αi )

· (ri (y
′), x) + q(μ′+αi−ν′,−αi )−1/2(λ,λ′)(r ′

i (y
′), x)
)
.

Therefore, 〈ad(Ei )v, v′〉 = (−1)|Ei ||v|〈v, ad(S(Ei ))v
′〉. Using a similar procedure, we

can check for u = Fi . Thus, we proved the ad-invariance of the bilinear form. ��
Proposition 4.8. Let u ∈ Uq(g). If 〈v, u〉 = 0 for all v ∈ Uq(g), then u = 0.

Proof. Notice that Uq(g) is the direct sum of all U−−νU
0U+

μ = U−−νKνU0U+
μ as vector

space. Therefore, it is sufficient to show that if u ∈ U−−νU
0U+

μ with 〈v, u〉 = 0 for all
v ∈ U−−μU

0U+
ν , then u = 0.

Since the skew-pairing betweenU− andU+ is non-degenerate,we can choose an arbitrary
basis uμ

1 , uμ
2 , · · · , uμ

r(μ) of U
+
μ and dual basis v

μ
1 , v

μ
2 , · · · , cμ

r(μ) of U
−−μ for any μ ∈ Q
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with respect to skew-pairing, i.e., (v
μ
i , uμ

j ) = δi j for all 1 � i, j � r(μ), where
r(μ) = dimU+

μ.

For any μ, ν ∈ Q, we know that
{

(vν
i Kν)Kλu

μ
j

∣
∣∣ for all λ ∈ Z� and 1 � i � r(ν),

1 � j � r(μ)
}
is a basis of U−−νU

0U+
μ. From Eq. (4.6), we have

〈(vμ
h Kμ)Kλ′uν

l , (v
ν
i Kν)Kλu

μ
j 〉 = δh jδli (−1)|μ|(q1/2)−(λ,λ′)q(2ρ,μ). (4.9)

Write u = ∑
i, j,λ

ai jλ(vν
i Kν)Kλu

μ
j . The assumption 〈v, u〉 = 0 for all v yields

∑

λ∈Z�

(−1)|ν|ai jλ(q1/2)−(λ,λ′) = 0, for all i, j, λ′. (4.10)

Thus, each ai jλ = 0; hence, u = 0 as well. ��

4.3. Quantum supertrace. In this subsection, in order to construct explicit central ele-
ment, we recall the definition of the quantum supertrace.

Let (A,�, ε, S) be a Z2-graded Hopf algebra over field k and M, N be two A-
modules. Then M∗ is an A-module with the action (a f )(m) = (−1)|a|| f | f (S(a)m) for
all m ∈ M, a ∈ A, f ∈ M∗. M ⊗ N is an A-module with the action a(m ⊗ n) =∑

(−1)|a(2)||m|a(1)m⊗a(2)n for all a ∈ A,m ∈ M, n ∈ N where�(a) =∑ a(1) ⊗a(2).
Homk(M, N ) is an A-modulewith the action (a f )(m) =∑(−1)|a(2)|| f |a(1) f (S(a(2))m)

for all a ∈ A,m ∈ M, f ∈ Homk(M, N ). Supposing that M is finite-dimensional, we
take {mi } to be a homogeneous basis of M and { fi } to be the dual basis with respect to
{mi }. Then we have |mi | = | fi | for all i and the following isomorphism of A-modules:

�M,N : N ⊗ M∗ → Hom(M, N ), n ⊗ f �→ ϕ f,n, (4.11)

with inverse homomorphism �M,N : g �→ ∑
g(mi ) ⊗ fi , where ϕ f,n(m) = f (m)n

for all f ∈ M∗, g ∈ Hom(M, N ),m ∈ M, n ∈ N . We also have a homomorphism of
A-modules εM : M∗ ⊗ M → k with εM ( f ⊗ m) = f (m) for all f ∈ M∗,m ∈ M .

In particular, A is the quantum superalgebraUq(g). Thenwe have S2(u) = K
−1
2ρ uK2ρ

since (ρ, αi ) = 2(αi , αi ) for all i ∈ I. We obtain a homomorphism of A-modules
ψM : M → (M∗)∗ with

(
ψM (m)

)
( f ) = (−1)| f ||m| f (K−1

2ρ m). (4.12)

Combined with the previous statements, we have the following homomorphisms of A-
modules

StrMq : End(M)
�M,M �� M ⊗ M∗ ψM⊗1M∗ �� (M∗)∗ ⊗ M∗ εM∗ �� k. (4.13)

This composition is the so-called quantum supertrace, which was used to construct knot
and 3-manifold invariants in [56] (we simply replace StrMq with Strq if no confusion
appears). More precisely, if g ∈ End(M), then

Strq(g) = εM∗ ◦ (ψM ⊗ 1M∗) ◦ �M,M (g) = (−1)|g(mi )|| fi |∑

i

fi
(
K

−1
2ρ g(mi )

)
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= (−1)mi
∑

i

fi
(
g(K−1

2ρ mi )
)
.

Let A be aZ2-graded Hopf algebra and define the adjoint representation of A as follows:
ad(a)(b) = ∑(−1)|b||a(2)|a(1)bS(a(2)). The map adM : A → End(M), which takes
a ∈ A to the action of a on M , is a homomorphism of A-modules and we have

Strq ◦ adM (u) = (−1)|mi |∑

i

fi
(
u(K−1

2ρ mi )
)
. (4.14)

Indeed, this is the supertrace of uK
−1
2ρ acting on M . In particular, we have

ad(Ei )u = Ei u − (−1)|u||ei |Ki uK
−1
i Ei , (4.15)

ad(Fi )u = (Fi u − (−1)|u|| fi |uFi )Ki , (4.16)

ad(Ki )u = Ki uK
−1
i . (4.17)

Noticed that ad(Ei ) = AdEi , but there is a slightly different between ad(Fi ) and AdFi ;
see (2.9) and (2.10).

4.4. Construct central elements. In this subsection, we construct central elements for
certain finite-dimensional Uq(g)-modules following Jantzen’s book [23].

Let ϕ : U−−μ × U+
ν → k be a bilinear map and λ ∈ Z�. There is a unique element

u ∈ (U−−νKν)KλU+
μ = U−−νKν+λU+

μ such that for all x ∈ U+
ν , y ∈ U−−ν, λ

′ ∈ Z�

〈(yKν)Kλ′x, u〉 = ϕ(y, x)(q1/2)−(λ,λ′). (4.18)

Indeed, u =∑(−1)|y|ϕ(v
μ
j , u

ν
i )q

−(2ρ,μ)(vν
i KνKλu

μ
j )will work and be unique accord-

ing to Proposition 4.8.

Lemma 4.9. Let M be a finite-dimensional Uq(g)-module such that all weights λ of
M satisfy 2λ ∈ Z�. Then there is for each m ∈ M and f ∈ M∗ a unique element
u ∈ Uq(g) such that f (vm) = 〈v, u〉 for all v ∈ Uq(g).

Proof. The uniqueness follows from Proposition 4.8. To prove the existence of u, we
may assume that f andm are weight vectors, since f (·m) depends linearly on f and m.
Suppose that there are twoweightsλ andλ′ ofM withm ∈ Mλ and f ∈ (M∗)λ′ ; i.e., with
f (Mλ′′) = 0 for all λ′′ 	= λ.We haveU+

νm ∈ Mλ+ν for all ν. AsM has only finitelymany
weights, there are only finitely many ν with U+

νm 	= 0. Since U−−μU
0U+

νm ⊆ Mλ+ν−μ

for allμ and ν, we get f (U−−μU
0U+

νm) = 0 unless λ′ = λ+ν −μ. This shows that there
are only finitely many pairs (μ, ν) with f (U−−μU

0U+
νm) 	= 0. For all x ∈ U+

ν , y ∈ U−−μ

and η ∈ Z�,

f (yKμKηxm) = q(η,λ+ν) f (yKμxm) = (q1/2)(η,2λ+2ν) f (yKμxm). (4.19)

For allμ and ν, the function (y, x) �→ f (yKμxm) is bilinear.We now use that 2(λ+ν) ∈
Z�. We get an element uνμ ∈ U−−μU

0U+
ν with 〈v, uνμ〉 = f (vm) for all v ∈ U−−μU

0U+
ν .

Then u =∑ uνμ will satisfy our claim. ��



On the Harish-Chandra Homomorphism for Quantum Superalgebras 1505

Remark 4.10. The condition all weights of M are contained in 1
2Z� is indispensable,

since the construction of uνμ depends on the condition 2(λ + ν) ∈ Z� according to the
expression of u in Eq. (4.18). Lemma 4.9 still work without this condition if one enlarge
the Cartan subalgebra of quantum superalgebra, also see Remark 6.5.

Lemma 4.11. Let M be a finite-dimensionalUq(g)-module such that all weights λ of M
satisfy 2λ ∈ Z�. Then there is a unique element zM ∈ Uq(g) such that 〈u, zM 〉 is equal
to the supertrace of uK

−1
2ρ acting on M for all u ∈ Uq(g). The element zM is contained

in the center Z(Uq(g)) of Uq(g).

Proof. Let {m1,m2, · · · ,mr } be a homogeneous basis of M and { f1, f2, · · · , fr } be the
dual basis of M∗, then the supertrace of uK

−1
2ρ acting on M is equal to

∑r
i=1(−1)|mi | fi

(uK
−1
2ρ mi ) = 〈u, zM 〉. In this way, the existence and uniqueness of zM follow from

Lemma 4.9. Recall that the map adM : Uq(g) → End(M) is a homomorphism of Uq(g)-
modules. We notice that StrMq ◦ adM (u) is the supertrace of uK

−1
2ρ acting on M for all

u ∈ Uq(g); i.e., StrMq ◦ adM (u) = 〈u, zM 〉 for all u ∈ Uq(g) by (4.14). This means that
for all u, v ∈ Uq(g),

ε(v)〈u, zM 〉 = v · (StrMq ◦ adM (u)) = 〈ad(v)u, zM 〉 = (−1)|v||u|〈u, ad(S(v))zM 〉.
(4.20)

Hence, ε(v)zM = (−1)|v|(|v|+|zM |)ad(S(v))zM = (−1)|v|ad(S(v))zM for all v ∈ Uq(g)

by Proposition 4.8. We also have (−1)|v|ad(v)zM = ε(v)zM by ε ◦ S = ε. Therefore,
zM is central in Uq(g). ��

5. Harish-Chandra Homomorphism of Quantum Superalgebras

5.1. The Harish-Chandra homomorphism. In the previous section, we used the Drin-
feld double to construct an ad-invariant bilinear form in Theorem 4.6, which was also
non-degenerate (see Proposition 4.8). By using this form and quantum supertrace, we
can construct the central elements of Uq(g), which contributes to establish the Harish-
Chandra isomorphism for quantum superalgebras Uq(g). Now we are ready to define
the Harish-Chandra homomorphism.

For each λ ∈ �, there is an algebra homomorphism, also denoted by λ : U0 → C,
λ(Kμ) = q(λ,μ) for all μ ∈ Z�. Obviously, (λ + λ′)(h) = λ(h)λ′(h) for h ∈ U0 and
λ, λ′ ∈ �.

The triangular decomposition of quantum superalgebra Uq(g) implies a direct sum
decomposition as follows:

U0 = U0 ⊕
⊕

ν>0

U−−νU
0U+

ν .

Let π : U0 → U0 be the projection with respect to this decomposition. One can check
that
⊕

ν>0
U−−νU

0U+
ν is a two-sided ideal of U0. Thus, π is an algebra homomorphism.

Denoting the center ofUq(g)byZ(Uq(g))
2,wehaveZ(Uq(g)) ⊆ U0 byProposition3.7.

2 In general, the center of the Lie superalgebra and quantum superalgebra is Z2-graded [8, Sect. 2.2].
Similar to the basic Lie superalgebra case, the center of Uq (g) consists of only even elements. However, the
center contains odd part is also interesting in some aspects; e.g., the skew center of generalized quantum
groups [3].
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Let z ∈ Z(Uq(g)) and write z = ∑
ν�0

zν where each zν ∈ U−−νU
0U+

ν , thus π(z) = z0.

If we take vλ ∈ �q(λ)λ, then zvλ = z0vλ = λ(z0)vλ. Since z is the center element of
Uq(g), this implies zv = λ(z0)v, ∀ v ∈ �q(λ), so it acts as scalar λ(z0) = λ(π(z)) on
�q(λ). We set χλ : Z(Uq(g)) → k by χλ(z) = λ(π(z)).

For λ ∈ �, we define an algebra automorphism

γλ : U0 → U0 by γλ(h) = λ(h)h, for all h ∈ U0.

Then

γλ(Kμ) = q(λ,μ)
Kμ, for all λ ∈ �, μ ∈ Z�.

Obviously, γ0 is the identity map, and

γλ ◦ γλ′ = γλ+λ′ and λ′(γλ(h)) = (λ + λ′)(h), for all λ, λ′ ∈ �, h ∈ U0.

Inspired by the quantum group case, we define theHarish-Chandra homomorphismHC
of Uq(g) to be the composite

HC : Z(Uq(g)) ↪→ U0
π−→ U0 γ−ρ−−→ U0.

Assume that h = HC(z) = γ−ρ ◦ π(z), we have χλ(z) = λ(π(z)) = λ(γρ(h)) =
(λ + ρ)(h) for all λ ∈ �.

Lemma 5.1. The Harish-Chandra homomorphism HC is injective.

Proof. Suppose z = ∑
μ�0

zμ ∈ Z(Uq(g)) with HC(z) = γ−ρ ◦ π(z) = 0 where zμ ∈
U−−μU

0U+
μ, then z0 = π(z) = 0 since γ−ρ is an algebra automorphism. If we assume

z 	= 0, then there exists zμ 	= 0 for some μ ∈ Q. Let β ∈ Q be a minimal element
satisfying β > 0 and zβ 	= 0. Let {yi } and {xk} be bases of U−

−β and U+
β , respectively,

and write

zβ =
∑

j,k

y j h jk xk, h jk ∈ U0.

For all x ∈ U+
γ , h ∈ U0, y ∈ U−−γ we have [Ei , yhx] = [Ei , y]hx + (−1)|y||Ei |y[Ei , hx]

with [Ei , y]hx ∈ U−
−(γ−αi )

U0U+
γ and y[Ei , hx] ∈ U−−γU

0U+
γ+αi

by Eq. (4.8). Since
[Ei , z] = 0,wehave

∑

j,k
[Ei , y j ]h jk xk = 0by theminimality ofβ.Hence

∑

j
[Ei , y j ]h jk =

0 for any k. Write β =
r∑

i=1
miαi , and let Lq(λ) be a finite-dimensional module with the

highest weight vector vλ. Then we have

Ei

(∑

j

λ(h jk)y jvλ

)
=
∑

j

[Ei , y j ]h jkvλ = 0,

for all i ∈ I. So
∑

j
λ(h jk)y jvλ generates a proper submodule of Lq(λ), and we get

∑

j
λ(h jk)y jvλ = 0. The linear map U−

−β → Lq(λ) given by y �→ yvλ is bijective if λ

satisfies the condition of Proposition 3.4. Hence,
∑

j
λ(h jk)y j = 0. Therefore, h jk = 0

for any j, k, and zβ = 0. This contradicts the choice of β with zβ 	= 0. Thus, z = 0 and
HC is injective. ��
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5.2. Description of the image of the HC. The image of the HC is much more compli-
cated.We split it into the following three lemmas. Recall that theWeyl groupW acts nat-
urally on U0 as w(Kμ) = Kwμ for all w ∈ W and μ ∈ Z�. We have (wλ)(wh) = λ(h)

for all w ∈ W, λ ∈ �, and h ∈ U0.

Lemma 5.2. The restriction of the image of Harish-Chandra homomorphism on the
center of quantum superalgebra Uq(g) is contained in the W-invariant of U0; i.e.,
HC(Z(Uq(g))

) ⊂ (U0)W .

Proof. The character of the Vermamodule�q(λ)with the highest weight λ ∈ � is given
by ch�q(λ) = 1

D e
μ+ρ where D = ∏

β∈�+
1̄

(eβ/2 − e−β/2)/
∏

α∈�+
0̄

(eα/2 − e−α/2) owing to

[27, Theorem 1] and Theorem 3.2.
Since the character of amodule is equal to the sum of the characters of its composition

factors, we have

ch�q(λ) =
∑

μ

bλμchLq(μ)

where bλμ ∈ Z+ and bλλ = 1. Since �q(λ) is a highest weight module, bλμ 	= 0 ⇒
λ − μ ∈∑

i
Z+αi and also χλ = χμ. Hence, we have

chLq(λ) =
∑

μ

aλμch�q(μ) and DchLq(λ) =
∑

μ

aλμe
μ+ρ

where aλμ ∈ Z with aλλ = 1, and aλμ = 0 unless λ − μ ∈∑
i

Z+α and χλ = χμ.

Assume for now that L(λ) is finite-dimensional. Then Lq(λ) is a semisimple g0̄-
module, and chLq(λ) isW -invariant as a result. On the other hand, w(D) = (−1)l(w)D
for all w ∈ W , and hence DchLq(λ) can be written as

∑

μ∈X
aλμ

∑

w∈W
(−1)l(w)ew(μ+ρ),

where X consists of �+
0̄
-dominant integral weights such that aλμ 	= 0. Moreover,

aλ,w(λ+ρ)−ρ = (−1)l(w)aλλ = (−1)l(w). Hence, we have χλ = χw(λ+ρ)−ρ for all
w ∈ W, λ ∈ � f.d., where � f.d. = {λ ∈ �|dimLq(λ) < ∞}.

For z ∈ Z(Uq(g)), we set h = HC(z). Assuming that λ ∈ � and Lq(λ) is finite-
dimensional, we get (λ + ρ)(h) = χλ(z) = χw(λ+ρ)−ρ(z) = (w(λ + ρ))(h) = (λ +
ρ)(wh). Hence λ(wh − h) = 0 for all w ∈ W . Fix w and write wh − h = ∑

μ

aμKμ.

Then λ
(∑

μ

aμKμ

) = ∑
μ

aμq(λ,μ) = 0 for all λ ∈ � f.d.. Thus, wh − h = 0 and

h ∈ (U0)W because the bilinear form on � f.d. × Z� is non-degenerate in the second
component. ��

Set

(U0
ev)

W =
{∑

μ

aμKμ

∣∣∣∣μ ∈ 2� ∩ Z� and aμ = awμ, ∀w ∈ W

}
. (5.1)
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Lemma 5.3. The Harish-Chandra homomorphism HC maps Z(Uq(g)) to (U0
ev)

W .

Proof. Take an arbitrary z ∈ Z(Uq(g)), we canwriteHC(z) =∑
μ

aμKμ with awμ = aμ

for anyw ∈ W .We only need to prove 〈μ, α〉 ∈ 2Z for allμ ∈ Z�with aμ 	= 0,α ∈ �0̄.
For each group homomorphism σ : Z� → {±1}, we can define an automorphism σ̃

of Uq(g) by

σ̃ (Kμ) = σ(μ)Kμ, σ̃ (Ei ) = Ei , σ̃ (Fi ) = σ(αi )Fi .

Obviously, σ̃ maps the center Z(Uq(g)) to itself. One can check that HC = γ−ρ ◦ π

commutes with σ̃ . We already haveHC(σ̃ (z)) = σ̃
(∑

μ

aμKμ

) =∑
μ

aμσ(μ)Kμ. Since

σ̃ (z) is central, the sum is in (U0)W ; so we have aμσ(μ) = awμσ(wμ) = aμσ(wμ)

for all w ∈ W . This means: if aμ 	= 0, then σ(μ) = σ(wμ) for all w ∈ W . Thus,
σ(μ − sαμ) = 1 for all α ∈ �+

0̄
, μ ∈ Z�. For each α, we can choose σ such that

σ(α) = −1. Therefore, (−1)〈μ,α〉 = 1 and 〈μ, α〉 ∈ 2Z. ��
For ν ∈ � and α ∈ �iso, we set Aα

ν = {ν + nα|n ∈ Z}. Clearly, � = ⋃
ν∈�

Aα
ν . Let

(U0
ev)

W
sup =

{∑

μ

aμKμ ∈ (U0
ev)

W
∣∣∣∣
∑

μ∈Aα
ν

aμ = 0, ∀α ∈ �iso with (ν, α) 	= 0

}
.

(5.2)

Lemma 5.4. The Harish-Chandra homomorphism HC maps Z(Uq(g)) to (U0
ev)

W
sup.

Proof. We claim that if α ∈ �iso and (λ + ρ, α) = 0, then χλ = χλ−kα for any
k ∈ Z. Indeed, if α = αs and (λ, αs) = 0, then we get a non-trivial homomorphism
ϕ : �q(λ−αs) → �q(λ) according to Lemma 3.1. In this way, z ∈ Z(Uq(g)) acts by the
same constant on both modules; i.e., χλ(z) = (λ+ρ)(h) = (λ−αs +ρ)(h) = χλ−αs (z)
where h = HC(z) = γ−ρ ◦ π(z). Thus, χλ = χλ−αs .

For any α ∈ �iso, if (λ + ρ, α) = 0, then there exists w ∈ W such that w(α) = αs .
Based on the W -invariance of (·, ·), we have (w(λ + ρ),w(α)

) = (λ + ρ, α) = 0, so

χλ = χw(λ+ρ)−ρ = χw(λ+ρ)−w(α)−ρ = χλ−α.

This implies χλ = χλ−α , so we conclude that χλ = χλ−kα for all k ∈ Z.
Now suppose h = γ−ρ ◦ π(z) =∑

μ

aμKμ for some z ∈ Z(Uq(g)) and α ∈ �iso, by

χλ(z) = (λ + ρ)
(∑

μ

aμKμ

)
and χλ = χλ−α for all (λ + ρ, α) = 0. We know

(λ + ρ + α)

(∑

μ

aμKμ

)
= (λ + ρ)

(∑

μ

aμKμ

)
, (5.3)

for all λ such that (λ + ρ, α) = 0, hence

∑

μ

aμq
(λ+ρ,μ)

(
q(μ,α) − 1

)
= 0. (5.4)
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Notice that (λ + ρ, ν) = (λ + ρ, ν′) and (ν, α) = (ν′, α) if Aα
ν = Aα

ν′ . For any h =∑

μ

aμKμ ∈ (U0
ev)

W
sup, we set Supp(h) = {μ ∈ 2�∩Z� | aμ 	= 0}. Suppose the elements

of Supp(h) are listed as

μ1, μ1 + n1,1α, · · · , μ1 + n1,q1α,

μ2, μ2 + n2,1α, · · · , μ2 + n2,q2α,

· · ·
μp, μp + n p,1α, · · · , μp + n p,qpα,

where Aα
μi

	= Aα
μ j

if i 	= j , and qi � 0 and 0 < ni,1 < ni,2 < · · · < ni,qi for each i .
Hence, Aα

μi
∩Supp(h) = {μi , μi +ni,1α, · · · , μi +ni,qi α}. Let X = {μ1, μ2, · · · , μp},

we can rewrite Eq. (5.4) as

∑

ν∈X

( ∑

μ∈Aα
ν

aμ

)(
q(ν,α) − 1

)
q(λ+ρ,ν) = 0 for all λ such that (λ + ρ, α) = 0.

Let �ν = {μ ∈ �|(μ, ν) = 0} for all ν ∈ �. The bilinear form on � induces a bilinear
map on �/Zα ×�α which is non-degenerate in both arguments. Set Y = {μi −μ j |1 �
i < j � p}, hence �α − �ν 	= ∅ for all ν ∈ Y and �α − ∪

ν∈Y �ν 	= ∅ by induction.

Take λ + ρ ∈ �α − ∪
ν∈Y �ν , this means (λ + ρ, α) = 0 and (λ + ρ, ν) 	= (λ + ρ, ν′) for

all ν 	= ν′ with ν, ν′ ∈ X . We get

p∑

i=1

( ∑

μ∈Aα
μi

aμ

)(
q(μi ,α) − 1

)
q( j (λ+ρ),μi ) = 0,

for all j = 1, 2, · · · , p. Moreover, the Vandermonde matrix
(
q( j (λ+ρ),μi )

)
p×p is invert-

ible since (λ + ρ,μi ) 	= (λ + ρ,μ j ) for all 1 � i 	= j � p. Therefore,
( ∑

μ∈Aα
μi

aμ

)(
q(μi ,α) − 1

)
= 0, (5.5)

for all i , and
∑

μ∈Aα
μi

aμ = 0 if (μi , α) 	= 0. The proof is completed. ��

Example 5.5. We give some explicit elements in (U0
ev)

W
sup when g is of small rank.

(i) Let g = A(1, 0). In such a case, �+
1̄

= {α2, α1 + α2} and 2� ∩ Z� = Zα1 + 2Zα2.
If λ = k1α1 + 2k2α2 is a �+

0̄
-dominant weight, then we have k1 � k2 and k1, k2 ∈ Z.

Furthermore,Wλ = {λ, λ−2(k1−k2)α1}. Thus kλ = Kλ −Kλ−2α2 −Kλ−2α1−2α2 +
Kλ−2α1−4α2 + Kλ−2(k1−k2)α1 − Kλ−2(k1−k2)α1−2α2 − Kλ−2(k1−k2)α1−2α1−2α2
+ Kλ−2(k1−k2)α1−2α1−4α2 ∈ (U0

ev)
W
sup.

(ii) Let g = C(2). As a result, �+
1̄

= {α1, α1 + α2} and 2� ∩ Z� = 2Zα1 + Zα2. If
λ = 2k1α1 + k2α2 is a �+

0̄
-dominant weight, then we have k2 � k1 and k1, k2 ∈ Z.

Furthermore,Wλ = {λ, λ−2(k2−k1)α2}. Thus kλ = Kλ −Kλ−2α1 −Kλ−2α1−2α2 +
Kλ−4α1−2α2 + Kλ−2(k2−k1)α2 − Kλ−2(k2−k1)α2−2α1 − Kλ−2(k2−k1)α2−2α1−2α2
+ Kλ−2(k2−k1)α2−4α1−2α2 ∈ (U0

ev)
W
sup.
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(iii) Let g = B(1, 1). In this case, the positive isotropic roots of g are {α1, α1 + 2α2} and
2� ∩ Z� = 2Zα1 + Zα2. If λ = λ1δ1 + μ1ε1 ∈ 2� ∩ Q is a �+

0̄
-dominant weight,

then we have λ1 	= 0, λ1 − 2, 2μ1 ∈ 2Z+. Furthermore, Wλ = {±λ1δ1 ± μ1ε1}.
Thus kλ = ∑

w∈W
w(Kλ − Kλ−2α1 − Kλ−2α1−4α2 + Kλ−4α1−4α2) ∈ (U0

ev)
W
sup.

5.3. Proof of theorem A. In order to prove the surjectivity ofHC, we need to investigate
the Grothendieck rings K (g) of finite-dimensional representations of the basic classical
Lie superalgebras g. In the following proposition, we identify the algebra (U0

ev)
W
sup with

k ⊗Z Jev(g), which plays a crucial role on the surjectivity ofHC.
Proposition 5.6. (U0

ev)
W
sup = k ⊗Z Jev(g).

Proof. For any α ∈ �iso, let elements of Supp(h) and X be same as proof of Lemma 5.4.
Furthermore, ni, j are even numbers for all possible i, j since there is an even root β

such that 2(α,β)
(β,β)

= 1. Then

Dα(h) =
∑

μ

aμ(μ, α)Kμ =
∑

ν∈X

∑

k∈Z+

aν+2kα(ν, α)Kν+2kα (5.6)

and
∑

k∈Z+

aν+2kα(ν, α)Kν+2kα ∈ (K2
α − 1), for all ν ∈ X

because
∑

k∈Z+

aν+kα = 0 for all ν ∈ X with (ν, α) 	= 0 and
∑

k∈Z+

aν+2kα(ν, α)Kν+2kα = 0

for all ν ∈ X with (ν, α) = 0.
On the other hand, take an element h =∑

μ

aμKμ ∈ k ⊗Z Jev(g), then

Dα(h) =
∑

μ

aμ(μ, α)Kμ =
∑

ν∈X

∑

k∈Z+

aν+kα(ν, α)Kν+kα ∈ (K2
α − 1),

for any α ∈ �iso. Therefore,
∑

k∈Z+

aν+kαKν+kα ∈ (K2
α − 1) for any ν ∈ X if (ν, α) 	= 0.

This implies that
∑

μ∈Aα
ν

aμ = ∑
k∈Z+

aν+kα = 0 if (ν, α) 	= 0. ��

Proposition 5.7. There is a linear map �R : k ⊗Z Kev(Uq(g)) → Z(Uq(g)) such that
the diagram in the introduction commutes.

Proof. Define a map �R : k ⊗Z Kev(Uq(g)) → Z(Uq(g)) by �R([M]) = zM where
zM is defined inLemma4.11.We need to prove themap iswell-defined and ι◦HC(zM ) =
Sch([M]) for all M in U-mod with all weights contained in � ∩ 1

2Z�.
For every short exact sequences 0 → L → M → N → 0 in U-mod, choose a

homogeneous basis {m1, · · · ,mk, · · · ,ml} of M such that {m1, · · · ,mk} is a basis of
L and {m̄k+1, · · · , m̄l} is a basis of N . Let { f1, · · · , fl} be the dual basis of M , then
{ f1, · · · , fk} and { f̄k+1, · · · , f̄l} can be viewed as dual bases of L and N , respectively.
Recall
(M) andπ defined inSect. 3.2, so {π⊗m1, · · · , π⊗ml} (resp. {π⊗ f1, · · · , π⊗
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fl}) is the basis (resp. dual bases) of 
(M), and |π ⊗ fi | = |π ⊗mi | = −|mi | = −| fi |
for all i . Hence,

〈u, zM 〉 =
l∑

i=1

(−1)|mi | fi (uK
−1
2ρ mi )

=
k∑

i=1

(−1)|mi | fi (uK
−1
2ρ mi ) +

l∑

i=k+1

(−1)|mi | fi (uK
−1
2ρ mi )

=
k∑

i=1

(−1)|mi | fi (uK
−1
2ρ mi ) +

l∑

i=k+1

(−1)|m̄i | f̄i (uK
−1
2ρ m̄i )

= 〈u, zL 〉 + 〈u, zN 〉 = 〈u, zL + zN 〉;

〈u, zM 〉 =
l∑

i=1

(−1)|mi | fi (uK
−1
2ρ mi ) = −

l∑

i=1

(−1)|π⊗mi |(π ⊗ fi )
(
uK

−1
2ρ (π ⊗ mi )

)

= −〈u, z
(M)〉.
Therefore, zL − zM + zN = 0 and zM + z
(M) = 0 according to Proposition 4.8.

Since zM is central, we have zM = ∑

μ�0
zM,μ where zM,μ ∈ U−−μU

0U+
μ. Write

zM,0 =∑
ν

aνKν . Then we have

〈Kμ′ , zM 〉 = 〈Kμ′ , zM,0〉 =
∑

ν

aν

(
q1/2
)−(ν,μ′)

,

for all μ′ ∈ Z�. On the other hand, this is the supertrace of Kμ′−2ρ acting on M . This
means it is equal to

∑

λ′
sdimMλ′q(λ′,μ′−2ρ) =

∑

λ′
sdimMλ′q−2(λ′,ρ)

(
q1/2
)(2λ′,μ′)

.

A comparison of these two formulas shows that

zM,0 =
∑

λ′
sdimMλ′q(−2λ′,ρ)

K−2λ′ .

We have zM,0 = π(zM ), hence

γ−ρ ◦ π(zM ) =
∑

λ′
sdimMλ′K−2λ′ , (5.7)

and ι ◦ HC(zM ) =∑
λ′

sdimMλ′eλ′ = Sch([M]). ��

Proof of Theorem A.

k ⊗Z Kev(Uq(g))

�R
		�
�
�

k ⊗Z Kev(g)� ���

∼=
		�
�
�

Z(Uq(g))
HC ������� (U0

ev)
W
sup k ⊗Z Jev(g)



1512 Y. Luo, Y. Wang, Y. Ye

The injectivity of HC follows from 5.1, so we only need to prove ImHC = (U0
ev)

W
sup.

Based on Proposition 5.7, the above diagram is commutative, so ImHC = (U0
ev)

W
sup. ��

By using ι ◦ HC ◦ �R([M]) = Sch([M]) for all [M] ∈ Kev(Uq(g)), we get �R
is injective. All morphisms in the diagram above are algebra isomorphisms as a re-
sult. Furthermore, for any [M] ∈ Kev(Uq(g)), there exists

∑

i
ai [L(λi )] with ai ∈ k

such that j (
∑

i
ai [L(λi )]) = [M], and these λi are distinct. Let X = {λi |ai /∈ Z}.

Supposing that X is nonempty and taking a maximal element λt in X for some t , we
get dimMλt = ∑

i
aidimL(λi )λt ∈ Z and dimL(λi )λt = δi t . Thus at = dimMλt is

an integer, contradicting λt ∈ X . Therefore, X is empty and ai ∈ Z for all i . Thus,
Kev(g) ↪→ Kev(Uq(g)) is an isomorphism induced by j .

Remark 5.8. In Appendix B, we describe the Jev(g) in the sense of Sergeev and Veselov
[42] and illustrate why Kev(g) � Jev(g) if g = A(1, 1) since u − v = K1 + K

−1
1 −

K3 − K
−1
3 ∈ Jev(g) and u − v /∈ J (A(1, 1)). Therefore, k ⊗Z J (A(1, 1)) ⊆ Im(HC) ⊆

k ⊗Z Jev(g). However, the image of HC for g = A(1, 1) has not yet determined.

6. Center of Quantum Superalgebras

6.1. Quasi-R-matrix. In Sect. 5, we established theHC for quantum superalgebras and
proved that the center Z(Uq(g)) is isomorphic to (U0

ev)
W
sup, the subalgebra of the ring

of exponential super-invariants Jev(g). This section studies the structural theorem for
the center. Our approach to obtaining a structural theorem for quantum superalgebras
takes advantage of the quasi-R-matrix, which is inspired by [49,50]. Recently, based
on main results [33], Dai and Zhang [10] used a similar method to investigate explicit
generators and relations for the center of the quantum group. They proved that the center
Z(Uq(g)) of quantum group Uq(g) is isomorphic to the subring of Grothendieck algebra
K (Uq(g)).

For eachμ ∈ Q,we takeuμ
1 , uμ

2 , · · · , uμ

r(μ) to be abasis ofU
+
μ. Since the skew-pairing

between the U+ and U− is non-degenerate, we can take the dual basis v
μ
1 , v

μ
2 , · · · , v

μ

r(μ)

of U−−μ, with respect to (v
μ
i , uμ

j ) = δi j , for all possible i, j . We have the following
proposition.

Proposition 6.1. Set �μ =
r(μ)∑

i=1
v

μ
i ⊗ uμ

i ∈ U ⊗ U. Then �μ does not depend on the

choice of the basis (uμ
i )i and

(Ei ⊗ 1)�μ + (Ki ⊗ Ei )�μ−αi = �μ(Ei ⊗ 1) + �μ−αi (K
−1
i ⊗ Ei ), (6.1)

(1 ⊗ Fi )�μ + (Fi ⊗ K
−1
i )�μ−αi = �μ(1 ⊗ Fi ) + �μ−αi (Fi ⊗ Ki ), (6.2)

(Ki ⊗ Ki )�μ = �μ(Ki ⊗ Ki ). (6.3)

Proof. It is easy to check�μ does not depend on the choice of the basis (uμ
i )i and (6.3).

For (6.1), we have

(Ei ⊗ 1)�μ − �μ(Ei ⊗ 1)
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=
r(μ)∑

j=1

[Ei , v
μ
j ] ⊗ uμ

j

=
r(μ)∑

j=1

(qi − q−1
i )−1((−1)|Ei ||ri (vμ

j )|
Ki ri (v

μ
j ) − r ′

i (v
μ
j )K

−1
i

)⊗ uμ
j

=
r(μ)∑

j=1

r(μ−αi )∑

k=1

(qi − q−1
i )−1

(
(−1)|Ei ||ri (vμ

j )|
Ki
(
ri (v

μ
j ), u

μ−αi
k

)
v

μ−αi
k

− (r ′
i (v

μ
j ), u

μ−αi
k

)
v

μ−αi
k K

−1
i

)
⊗ uμ

j

=
r(μ)∑

j=1

r(μ−αi )∑

k=1

(
− (−1)|Ei ||ri (vμ

j )|
Ki (Fi , Ei )

(
ri (v

μ
j ), u

μ−αi
k

)
v

μ−αi
k

+ (Fi , Ei )
(
r ′
i (v

μ
j ), u

μ−αi
k

)
v

μ−αi
k K

−1
i

)
⊗ uμ

j

=
r(μ)∑

j=1

r(μ−αi )∑

k=1

(− (−1)|Ei ||ri (vμ
j )|

Ki (v
μ
j , Ei u

μ−αi
k )v

μ−αi
k

+ (v
μ
j , u

μ−αi
k Ei )v

μ−αi
k K

−1
i

)⊗ uμ
j

=
r(μ−αi )∑

k=1

−(−1)|Ei ||ri (vμ
j )|

Kiv
μ−αi
k ⊗ Ei u

μ−αi
k + v

μ−αi
k K

−1
i ⊗ uμ−αi

k Ei

= −(Ki ⊗ Ei )�μ−αi + �μ−αi (K
−1
i ⊗ Ei ).

Thus, (6.1) holds. Because the proof for Eq. (6.2) is similar to that for Eq. (6.1), we omit
it here. ��

There is an algebra automorphism φ of Uq(g) ⊗ Uq(g) defined by

φ(Ki ⊗ 1) = Ki ⊗ 1, φ(Ei ⊗ 1) = Ei ⊗ K
−1
i , φ(Fi ⊗ 1) = Fi ⊗ Ki ,

φ(1 ⊗ Ki ) = 1 ⊗ Ki , φ(1 ⊗ Ei ) = K
−1
i ⊗ Ei φ(1 ⊗ Fi ) = Ki ⊗ Fi ,

and φ can be extended to Uq(g)⊗̂Uq(g), which is a completion of the tensor product
Uq(g)⊗Uq(g). Then the quasi-R-matrix is

∑

μ�0
�μ ∈ Uq(g)⊗̂Uq(g)

3 and it is invertible.

Its inverse is denoted by R. Then, by Proposition 6.1, we have

R�(u) = φ
(
�op(u)

)
R, and Rop�op(u) = φ

(
�(u)
)
Rop.

The universal R-matrix can be derived from the quasi-R-matrix, which is significant
because it can induce solutions of the quantum Yang-Baxter equation on any of its mod-
ules. This approach is prominent in the study of integrable systems, knot invariants and
so on. The following proposition is essential for us to construct the explicit central ele-
ments, named Casimir invariants, which have been used to construct a family of Casimir
invariants for quantum groups [10], quantum superalgebras Uq(glm|n) and Uq(ospm|2n).

3 More properties about quasi-R-matrix in a super setting can be deduction follows [34, Chap. 4]. For
example, R̄ = R−1, where the automorphism ¯ of U⊗̂U is defined in [34, Chap. 4].
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6.2. Constructing central elements using quasi-R-matrix.

Proposition 6.2 [48, Proposition 2]. Given an operator �M ∈ End(M) ⊗ Uq(g) satis-
fying

[�M ,�(u)] = 0 for all u ∈ Uq(g), (6.4)

the elements

C (k)
M := Str1

(
(ζ ⊗ 1)(K2ρ ⊗ 1)(�M )k

)
(6.5)

are central in Uq(g), where Str1( f ⊗ u) = Str( f )u for f ∈ End(M) and u ∈ Uq(g).

Proof. We only need to prove [C (k)
M , Ki ] = [C (k)

M , Ei ] = [C (k)
M , Fi ] = 0 for all i ∈ I.

Assume (�M )k =∑
j
A j ⊗ Bj , then

0 = Str1
(
(K2ρK

−1
i ⊗ 1)[(�M )k,�(Ki )]

)

= Str1
(
(K2ρK

−1
i ⊗ 1)

[∑

j

A j ⊗ Bj , Ki ⊗ Ki

])

=
∑

j

Str(K2ρK
−1
i A jKi )BjKi −

∑

j

Str(K2ρ A j )Ki B j

= [C (k)
M , Ki ],

where the last equation holds by Str([x, y]) = 0 for all x, y ∈ End(M). And,

0 = Str1
(
(K2ρ ⊗ 1)[(�M )k,�(Fi )]

)

= Str1
(
(K2ρ ⊗ 1)

[∑

j

A j ⊗ Bj , Fi ⊗ K
−1
i + 1 ⊗ Fi

])

= Str1
(
(K2ρ ⊗ 1)

∑

j

(
(−1)|Bj ||Fi |A jFi ⊗ BjK

−1
i + A j ⊗ BjFi

− (−1)|Fi |(|A j |+|Bj |)Fi A j ⊗ K
−1
i B j − (−1)|Fi ||Bj |A j ⊗ Fi B j

))

= [C (k)
M , Fi ],

where the last equation follows from
[∑

j
A j ⊗ Bj , Ki ⊗ Ki

]
= 0 and Str([x, y]) = 0

for all x, y ∈ End(M). ��
Let M denote a finite-dimensional weight module of Uq(g) and let ζ denote the

representation afforded by M . Let PM
η : M → Mη be the projection from M to Mη and

define the following element in End(M) ⊗ Uq(g) as

KM =
∑

η∈wt(M)

PM
η ⊗ K2η. (6.6)

Using the definition of φ, we obtain

KM (ζ ⊗ 1)
(
φ2(�(u))

) = (ζ ⊗ 1)(�(u))KM , ∀u ∈ Uq(g). (6.7)
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Define RM = (ζ ⊗ 1)(R) and Rop
M = (ζ ⊗ 1)(Rop), we have

KMφ(Rop
M )RM (ζ ⊗ 1)(�(u)) = KM (ζ ⊗ 1)

(
φ(Rop)R�(u)

)

= KM (ζ ⊗ 1)
(
φ2(�(u))φ(Rop)R

)

= KM (ζ ⊗ 1)
(
φ2(�(u))

)
φ(Rop

M )RM

= (ζ ⊗ 1)(�(u))KMφ(Rop
M )RM , ∀u ∈ Uq(g).

If we take

�M = KMφ(Rop
M )RM , (6.8)

then [�M , (ζ ⊗ 1)(�(u))] = 0, for all u ∈ Uq(g).

Example 6.3. This example was known in [48,53]. Let U = Uq(A(1, 0)) and ζ : U →
End(M) = End(Lq(ε1)) be the vector representation. Let v1 be its highest weight vector
withweightλ1, and let v2 = F1v1, v3 = F2F1v1 andλ2, λ3 be the correspondingweights
associated with v2, v3, respectively. {v1, v2, v3} is a basis of M . By using of (4.1) and
(4.3), {−(qi − qi )−1

Fi } and {Ei } are two basis-dual basis pairs of U−−αi
and U+

αi
for

i = 1, 2 and

{(q − q−1)F1F2, (q
−1 − q)F2F1} and {qE1E2 − E2E1, E1E2 − qE2E1}

is a basis-dual basis pair of U−−α1−α2
and U+

α1+α2
with respect to the Drinfeld double. We

have R = ∑
μ�0

�μ, which is a generalization of [34, Corollary 4.1.3]. Then

RM = (ζ ⊗ 1)(1 ⊗ 1 +
2∑

i=1

(qi − q−1
i )Fi ⊗ Ei − (q−1 − q)F2F1

⊗(E1E2 − q−1
E2E1) − (q − q−1)F1F2 ⊗ (q−1

E1E2 − E2E1)) (6.9)

and

φ(Rop
M ) = (ζ ⊗ 1)(1 ⊗ 1 + (q−1 − q)(E1E2 − q−1

E2E1)K2K1 ⊗ K
−1
2 K

−1
1 F2F1

+
2∑

i=1

(−1)δi2(qi − q−1
i )EiKi ⊗ K

−1
i Fi + (q − q−1)

(q−1
E1E2 − E2E1)K1K2 ⊗ K

−1
2 K

−1
1 F1F2). (6.10)

because ζ(U−−ν) = 0 if ν 	= α1, α2, α1 + α2. Substitute (6.6), (6.9) and (6.10) into (6.8)
and (6.5). As a result,

C (1)
M = Str1

(
(ζ ⊗ 1)(K2ρ ⊗ 1)KMφ(Rop

M )RM
)

=
3∑

i=1

(−1)|vi |q(2ρ,λi )K2λi +
2∑

i=1

(qi − q−1
i )2(−1)|vi |q(αi ,λi+1)+(2ρ,λi )K2λi K

−1
i FiEi

+ (q − q−1)2q(2ρ,λ1)+(α1+α2,λ3)K2λ1K
−1
2 K

−1
1 (F2F1 − q−1

F1F2)(E1E2 − q−1
E2E1)

= K
−2
2 + q−2

K
−2
1 K

−2
2 − q−2

K
−2
1 K

−4
2 + (q − q−1)2

(q−1
K

−1
1 K

−2
2 F1E1 + q−1

K
−2
1 K

−3
2 F2E2)
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+ (q − q−1)2qK
−1
1 K

−3
2 (F2F1 − q−1

F1F2)(E1E2 − q−1
E2E1),

by using

2ρ = α1 − α2 − (α1 + α2) = −2α2;
λ1 = ε1 = −ε2 + δ1 = −α2;
λ2 = ε2 = −ε1 + δ1 = −α1 − α2;
λ3 = δ1 = −ε1 − ε2 + 2δ1 = −α1 − 2α2.

There is a k-algebra anti-automorphism τ of U defined by τ(Ei ) = Fi , τ (Fi ) =
Ei , τ (K±1

i ) = K
±1
i for i = 1, 2. It is obvious that C (1)

M commutes with K1 and K2. One

can check directly thatC (1)
M commutes withE1 andE2. BecauseC

(1)
M is τ -invariant,C (1)

M

commutes with F1 and F2. Therefore, C
(1)
M ∈ Z(Uq(g)).

6.3. Proof of theorem B. In the previous subsection, we used the quasi-R-matrix to con-
struct an explicit �M associated with a finite-dimensional Uq(g)-module M satisfying
Proposition 6.8. Thus, we obtained a family of central elements of Uq(g). Now, we are

ready to prove Theorem B. For convenience, we simplify CLq (λ) for C
(1)
Lq (λ).

Theorem 6.4. {CLq (λ) | λ ∈ � ∩ 1
2Z� and L(λ) finite-dimensional } is a basis of

Z(Uq(g)) if g 	= A(1, 1).

Proof. Applying the HC to CLq (λ)∗ results in

HC (CLq (λ)∗
) = HC

(
Str1
((

ζ(K2ρ) ⊗ 1
)
�Lq (λ)∗

))

= γ−ρ ◦ π

(
Str1
((

ζ(K2ρ) ⊗ 1
)KLq (λ)∗

))

=
∑

η∈wt(Lq (λ)∗)
γ−ρ

(
Str(q(2ρ,η)P

Lq (λ)∗
η )K2η

)

=
∑

μ

sdimLq(λ)μK−2μ = HC (zLq (λ)

)
.

According toTheoremA(i.e., theHC = γ−ρ◦π is an algebra isomorphism), zLq (λ) =
CLq (λ)∗ . Furthermore,

{ [Lq(λ)]∣∣ λ ∈ � ∩ 1
2Z� and Lq(λ) is finite-dimensional

}
is a ba-

sis of Kev(Uq(g)). Hence,
{
CLq (λ)∗

∣∣ λ ∈ � ∩ 1
2Z� and Lq(λ) is finite-dimensional

}
is

a basis of Z(Uq(g)). So is
{
CLq (λ)

∣
∣ λ ∈ � ∩ 1

2Z� and L(λ) is finite-dimensional
}
. ��

Remark 6.5. One can define a new quantum superalgebra Ũ = Ũq(g) associated with
a simple Lie superalgebra g, except for A(1, 1), by replacing the cartan subalgebra of
quantum superalgebra Uq(g) with the group ring k� if Z� ⊆ � ⊆ �, W� = � and
q(γ,λ) ∈ k for all γ ∈ �, λ ∈ �. Using the same procedure, we can establish the
Harish-Chandra isomorphism between Z(Ũ) and (Ũ0

ev)
W
sup, where

(Ũ0
ev)

W
sup =

{ ∑

μ∈2�∩�

aμKμ ∈ U0
∣∣∣∣awμ = aμ, ∀w ∈ W ;
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∑

μ∈Aα
ν

aμ = 0, ∀α ∈ �iso with (ν, α) 	= 0

}
.

In particular, K (g) ∼= K�(Ũ), where K�(Ũ) is the subring of K (Ũ) generated by all
objects in Ũ-mod whose weights are contained in � if � = �.

Remark 6.6. Our approach to obtaining the Harish-Chandra type theorem for quantum
superalgebras of type A-G takes advantage of the Rosso form, which cannot be applied
to quantum queer superalgebra Uq(qn) [37] or quantum perplectic superalgebra Uq(pn)
[1]. One immediate problem is to establish the Harish-Chandra type theorems for these
quantum superalgebras. We hope to return to these questions in future.
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Appendix A. Dynkin Diagrams in Distinguished Root Systems

TheDynkin diagrams in the distinguished root systems of a simple basicLie superalgebra
of type A-G are listed below, where r is the number of nodes and s is the element of τ .
Note that the form of Dynkin diagrams in the distinguished root systems is quite uniform
in the literature.

A(m, n) case : Let h∗ be a vector space spanned by {εi − εi+1, εm+1 − δ1, δ j −
δ j+1|1 � i � m, 1 � j � n} satisfies

(ε1 + . . . + εm+1) − (δ1 + . . . + δn+1) = 0.

We equip the dual h∗ with a bilinear form (·, ·) such that

(εi , ε j ) = δi j , (εi , δ j ) = (δ j , εi ) = 0, (δi , δ j ) = −δi j for all possible i, j.

The distinguished fundamental system 
 = {α1, . . . , αm+n+1} is given by

{ε1 − ε2, . . . , εm,−εm+1, εm+1 − δ1, δ1 − δ2, . . . , δn − δn+1}.

The Dynkin diagram associated with 
 is depicted as follows:

�
ε1 − ε2

�
ε2 − ε3

. . . �
εm − εm+1

⊗εm+1 − δ1

�
δ1 − δ2

. . . �
δn − δn+1.
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In this case r = m + n +1, s = m +1. The distinguished positive system �+ = �+
0̄
∪�+

1̄
corresponding to the distinguished Borel subalgebra for A(m, n) is

{εi − ε j , δk − δl |1 � i < j � m + 1, 1 � k < l � n + 1}
∪ {εi − δ j |1 � i � m + 1, 1 � j � n + 1}.

The Weyl group W ∼= Sm+1 × Sn+1.

B(m, n) case: Let h∗ be a vector space with basis {εi , δ j |1 � i � m, 1 � j � n}.
We equip the dual h∗ with a bilinear form (·, ·) such that

(εi , ε j ) = δi j , (εi , δ j ) = (δ j , εi ) = 0, (δi , δ j ) = −δi j for all possible i, j.

The distinguished fundamental system 
 = {α1, . . . , αm+n} is given by

{δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm}.
The Dynkin diagram associated with 
 is depicted as follows:

�
δ1 − δ2

... �
δn−1 − δn

⊗δn − ε1

�
ε1 − ε2

... �
εm−1 − εm

> �
εm .

In this case r = m + n, s = n + 1. The distinguished positive system �+ = �+
0̄
∪ �+

1̄
corresponding to the distinguished Borel subalgebra is

{δi ± δ j , 2δp, εk ± εl , εq} ∪ {δp ± εq , δp},
where 1 � i < j � n, 1 � k < l � m, 1 � p � n, 1 � q � m. The Weyl group
W ∼= (Sn � Z

n
2) × (Sm � Z

m
2 ).

B(0, n) case: Let h∗ be a vector space with basis {δi |1 � i � n}. We equip the
dual h∗ with a bilinear form (·, ·) such that

(δi , δ j ) = −δi j for all possible i, j.

The distinguished fundamental system 
 = {α1, . . . , αn} is given by

{δ1 − δ2, . . . , δn−1 − δn, δn}.
The Dynkin diagram associated with 
 is depicted as follows:

�
δ1 − δ2

�
δ2 − δ3

... �
δn−1 − δn

> �
δn .

In this case, r = s = n. The distinguished positive system �+ = �+
0̄

∪ �+
1̄
corre-

sponding to the distinguished Borel subalgebra is

{δi ± δ j , 2δp|1 � i < j � n, 1 � p � n} ∪ {δp|1 � p � n}.
The Weyl group W ∼= (Sn � Z

n
2).
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C(n + 1) case: Let h∗ be a vector space with basis {ε, δi |1 � i � n}. We equip the
dual h∗ with a bilinear form (·, ·) such that

(ε, ε) = 1, (ε, δi ) = (δi , ε) = 0, (δi , δ j ) = −δi j for all possible i, j.

The distinguished fundamental system 
 = {α1, . . . , αn+1} is given by

{ε − δ1, δ1 − δ2, . . . , δn−1 − δn, 2δn}.
The Dynkin diagram associated with 
 is depicted as follows:

⊗
ε − δ1

�
δ1 − δ2

... �
δn−2 − δn−1

�
δn−1 − δn

< �
2δn .

In this case r = n + 1, s = 1. The distinguished positive system �+ = �+
0̄

∪ �+
1̄

corresponding to the distinguished Borel subalgebra is

{δi ± δ j , 2δp|1 � i < j � n, 1 � p � n} ∪ {ε ± δp|1 � p � n}.
The Weyl group W ∼= (Sn � Z

n
2).

D(m, n) case: Let h∗ be a vector space with basis {εi , δ j |1 � i � m, 1 � j � n}.
We equip the dual h∗ with a bilinear form (·, ·) such that

(εi , ε j ) = δi j , (εi , δ j ) = (δ j , εi ) = 0, (δi , δ j ) = −δi j for all possible i, j.

The distinguished fundamental system 
 = {α1, . . . , αm+n} is given by

{δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm}.
The Dynkin diagram associated with 
 is depicted as follows:

�
δ1 − δ2

... �
δn−1 − δn

⊗δn − ε1

�
ε1 − ε2

... �
εm−2 − εm−1

��
��

�
εm−1 − εm

�
εm−1 + εm .

In this case r = m + n, s = n + 1. The distinguished positive system �+ = �+
0̄
∩ �+

1̄
corresponding to the distinguished Borel subalgebra is

{δi ± δ j , 2δp, εk ± εl , } ∪ {δp ± εq},
where 1 � i < j � n, 1 � k < l � m, 1 � p � n, 1 � q � m. The Weyl group
W ∼= (Sn � Z

n
2) × (Sm � Z

m−1
2 ).

D(2, 1;α) case : Let h∗ be a vector space with basis {ε1, ε2, ε3}. We equip the dual
h∗ with a bilinear form (·, ·) with

(ε1, ε1) = −(1 + α), (ε2, ε2) = 1, (ε3, ε3) = α and

(εi , ε j ) = 0 for all 1 � i 	= j � 3.

The distinguished fundamental system


 = {α1 = ε1 + ε2 + ε3, α2 = −2ε2, α3 = −2ε3}.
The Dynkin diagram associated with 
 is depicted as follows:
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©

©
⊗

���

���
−2ε2

−2ε3.

ε1 + ε2 + ε3

In this case r = 3, s = 1. The distinguished positive system �+ = �+
0̄

∩ �+
1̄

corresponding to the distinguished Borel subalgebra is

�+
0̄

= {2ε1,−2ε2,−2ε3}, �+
1̄

= {ε1 ± ε2 ± ε3}.
The Weyl group W ∼= Z

3
2.

F(4) case : Let h∗ be a vector space with basis {δ, ε1, ε2, ε3}.We equip the dual h∗
with a bilinear form (·, ·) such that

(δ, δ) = −3, (εi , δ) = (δ, εi ) = 0, (εi , ε j ) = δi j for all i.

The distinguished fundamental system


 =
{
α1 = 1

2
(δ − ε1 − ε2 − ε3), α2 = ε3, α3 = ε2 − ε3, α4 = ε1 − ε2

}
.

The Dynkin diagram associated with 
 is depicted as follows:

⊗
1
2 (δ − ε1 − ε2 − ε3)

�
ε3

< �
ε2 − ε3

�
ε1 − ε2.

In this case r = 4, s = 1. The distinguished positive system �+ = �+
0̄

∩ �+
1̄

corresponding to the distinguished Borel subalgebra is

{δ, εp, εi ± ε j |1 � i < j � 3, 1 � p � 3} ∪
{
1

2
(δ ± ε1 ± ε2 ± ε3)

}
,

The Weyl group W = Z2 × (S3 � Z
3
2).

G(3) case : Let h∗ be a vector space with basis {δ, ε1, ε2} and ε3 = −ε1 − ε2. We
equip the dual h∗ with a bilinear form (·, ·) such that

(δ, δ) = −(εi , εi ) = −2, (εi , δ) = (δ, εi ) = 0, (εi , ε j ) = −1, for all 1 � i 	= j � 3.

The distinguished fundamental system


 = {α1 = δ + ε3, α2 = ε1, α3 = ε2 − ε1}.
The Dynkin diagram associated with 
 is depicted as follows:

⊗
δ + ε3

�
ε1

< �
ε2 − ε1.

In this case r = 3, s = 1. The distinguished positive system �+ = �+
0̄

∩ �+
1̄

corresponding to the distinguished Borel subalgebra is

{2δ, ε1, ε2, ε2 ± ε1, ε1 − ε3, ε2 − ε3} ∪ {δ, δ ± εi |i = 1, 2, 3},
The Weyl group W = Z2 × D6, where D6 is the dihedral group of order 12.
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Appendix B. Explicit Description of the Rings Jev(g)

Now we give the explicit description of the rings Jev(g) for quantum superalgebras,
which is inspired by Sergeev and Veselov’s description for Lie superalgebras [42, Sects.
7, 8]. Let xi = K−εi /2 and y j = K−δ j /2 formally. First we need to review the rings J (g)
for g is of type A. Let

P0 =
{ m+1∑

i=1

aiεi +
n+1∑

j=1

b jδ j

∣
∣∣∣ai , b j ∈ C and ai − ai+1, b j − b j+1 ∈ Z, ∀i, j

}/
Cγ

be the weights of slm+1|n+1, where γ = ε1 + · · · + εm+1 − δ1 − · · · − δn+1 and xi =
eεi , y j = eδ j for all possible i, j be the elements of the group ring of C[P0]. For
convenience, we set C[x±, y±] = C[x±1

1 , · · · , x±1
m+1, y

±1
1 , · · · , y±1

n+1], Z[x±, y±] =
Z[x±1

1 , · · · , x±1
m+1, y

±1
1 , · · · , y±1

n+1] and then for (m, n) 	= (1, 1)

J (slm+1|n+1) =
{
f ∈ Z[P0]W

∣∣∣∣y j
∂ f

∂y j
+ xi

∂ f

∂xi
∈ (xi − y j )

}

=
⊕

a∈C/Z

J (slm+1|n+1)a,

where

J (slm+1|n+1)a = (x1 · · · xm+1)
a
∏

i,p

(
1 − xi

yp

)
Z[x±1, y±1]Sm+1×Sn+1

0

if a /∈ Z;

J (slm+1|n+1)0 =
{
f ∈ Z[x±1, y±1]Sm+1×Sn+1

0

∣
∣∣∣xi

∂ f

∂xi
+ y j

∂ f

∂y j
∈ (xi − y j )

}

and Z[x±1, y±1]Sm+1×Sn+1
0 is the quotient of the ring Z[x±1, y±1]Sm+1×Sn+1 by the

ideal generated by x1 · · · xm+1 − y1 · · · yn+1.
J (A(n, n)) = n⊕

i=0
J (A(n, n))i for n 	= 1, where for i 	= 0

J (A(n, n))i =
{
f = (x1 · · · xn+1) i

n+1

n+1∏

j,p

(
1 − x j

yp

)
g

∣∣∣∣g ∈ Z[x±1, y±1]Sn+1×Sn+1
0 , deg g = −i

}

and J (A(n, n))0 is the subring of J (sln+1|n+1)0 consisting of elements of degree 0.

J (A(1, 1)) = {c + (u − v)2g|c ∈ Z, g ∈ Z[u, v]} where u =
(
x1
x2

) 1
2
+
(
x2
x1

) 1
2
, v =

(
y1
y2

) 1
2
+
(
y2
y1

) 1
2
.

A(m, n),m 	= n case: Define

Jm|n =
{
f ∈ Z[x±1, y±1]Sm+1×Sn+1

∣∣∣
∣xi

∂ f

∂xi
+ y j

∂ f

∂y j
∈ (xi − y j )

}
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and

Jm|n
k =

{
f ∈ Jm|n

∣∣∣ deg f = k
}

.

Thus, Jm|n = ⊕
k∈Z

Jm|n
k .

For any element λ ∈ h∗, we write λ =
m+1∑

i=1
aiεi +

n+1∑

j=1
b jδ j , then we have

Z� =
{
λ ∈ h∗

∣
∣∣∣ai , b j ∈ Z, ∀i, j and

m+1∑

i=1

ai +
n+1∑

j=1

b j = 0

}
,

and

� =
{
λ ∈ h∗

∣
∣∣∣ai , b j ∈ Q, ai − ai+1, b j − b j+1 ∈ Z, ∀i � m, j � n

and
m+1∑

i=1

ai +
n+1∑

j=1

b j = 0

}
.

By direct computation, we know that

2� ∩ Z� =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Z� + Z

(
m+1∑

i=1
(−1)i+1εi +

n+1∑

j=1
(−1) jδ j

)

, if m = 2k, n = 2l,

2Z� + Z

n+1∑

j=1
(−1) jδ j , if m = 2k, n = 2l + 1,

2Z� + Z

m+1∑

i=1
(−1)i+1εi , if m = 2k + 1, n = 2l,

2Z� + Z

m+1∑

i=1
(−1)i+1εi + Z

n+1∑

j=1
(−1) jδ j , if m = 2k + 1, n = 2l + 1,

for some non-negative integers k, l. Then the algebra

Jev(g) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Jm|n
0 ⊕∏

i
x

1
2
i

∏

j
y

1
2
j J

m|n
−(k+l+1), if m = 2k, n = 2l,

Jm|n
0 ⊕∏

j
y

1
2
j J

m|n
−(l+1), if m = 2k, n = 2l + 1,

Jm|n
0 ⊕∏

i
x

1
2
i Jm|n

−(k+1), if m = 2k + 1, n = 2l,

Jm|n
0 ⊕∏

i
x

1
2
i Jm|n

−(k+1) ⊕∏
j
y

1
2
j J

m|n
−(l+1) ⊕∏

i
x

1
2
i

∏

j
y

1
2
j J

m|n
−(k+l+2), if m = 2k + 1, n = 2l + 1.

for some non-negative integers k, l. So it can be viewed as a subalgebra of J (g) by
ι : Jev(g) → J (g) with Ki �→ e−αi /2 and its image is coincide with Sch(Kev(g)).

A(n, n) (n 	= 1) case: In this case, we set

J (n)0 =
{
f ∈ Z[x±1, y±1]Sn+1×Sn+1

0,0

∣∣∣∣xi
∂ f

∂xi
+ y j

∂ f

∂y j
∈ (xi − y j )

}
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where Z[x±1, y±1]0,0 is the quotient of the ring Z[x±1, y±1] with degree 0 by the ideal
I =
〈
x1···xn+1
y1···yn+1 − 1

〉
. Then we have

Jev(g) =

⎧
⎪⎨

⎪⎩

J (n)0 if n is even,

J (n)0 ⊕
{
−→x 1

2
∏

j,p

(
1 − x j

yp

)
g + I

∣
∣
∣
∣g ∈ Z[x±1, y±1]W , deg g = − n+1

2

}
if n is odd,

where −→x = x1x2 · · · xn+1 and W = Sn+1 × Sn+1. It can be viewed as a subalgebra by
ι : Jev(g) → J (g) with Ki �→ e−αi /2 and its image is coincide with Sch(Kev(g)).

A(1, 1) case: We have Jev(A(1, 1)) = {c + (u − v)g |g ∈ Z[u, v] } where u =
(
x1
x2

) 1
2
+
(
x2
x1

) 1
2
, v =

(
y1
y2

) 1
2
+
(
y2
y1

) 1
2
. Andu−v = K1+K

−1
1 −K3−K

−1
3 ∈ Jev(A(1, 1)),

but u − v /∈ J (A(1, 1)).

B(m, n),m, n > 0 case: We set λ =
m∑

i=1
λiεi +

n∑

j=1
μ jδ j ∈ h∗, then in this case

Z� = {λ ∈ h∗ ∣∣λi , μ j ∈ Z, ∀i, j } and

� =
{
λ ∈ h∗

∣∣
∣∣μ j ∈ Z, ∀ j and all λi ∈ Z or all λi ∈ Z +

1

2

}
.

So 2� ∩ Z� = 2�. Let ui = xi + x−1
i and v j = y j + y−1

j for all possible i, j , then we
have Jev(g) = J (g)0 ⊕ J (g)1/2, where

J (g)0 =
{
f ∈ Z[u1, · · · , um, v1, · · · , vn]Sm×Sn

∣∣∣∣ui
∂ f

∂ui
+ v j

∂ f

∂v j
∈ (ui − v j )

}
,

and

J (g)1/2 =
{ m∏

i=1

(x1/2i + x−1/2
i )

m∏

i=1

n∏

j=1

(ui − v j )g

∣∣∣∣g ∈ Z[u1, · · · , um , v1, · · · , vn]Sm×Sn

}
.

B(0, n) case: In this case� = Z� =
{ n∑

j=1
μ jδ j

∣∣∣μ j ∈ Z, ∀ j
}
, so 2�∩Z� = 2�

and this algebra Jev(g) = Z[v1, v2, · · · , vn]Sn , where the notation vi are the same as
above.

C(n + 1) case: In this case

� =
{
λε +

n∑

j=1

μ jδ j

∣
∣∣∣λ ∈ C, μ j ∈ Z, ∀ j

}

and

Z� =
{
λε +

n∑

j=1

μ jδ j

∣∣∣∣λ,μ j ∈ Z, ∀ j and λ +
n∑

j=1

μ j is even

}
.
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So 2� ∩ Z� =
{
λε +

n∑

j=1
μ jδ j

∣∣∣λ,μ j ∈ 2Z, ∀ j
}
and the algebra

Jev(g) =
{
f ∈ Z[x±1, y±1

1 , · · · , y±1
n+1]W

∣∣∣∣y j
∂ f

∂y j
+ x

∂ f

∂x
∈ (x − y j )

}
.

D(m, n),m > 1, n > 0 case: Let λ =
m∑

i=1
λiεi +

n∑

j=1
μ jδ j ∈ h∗ and ui , v j are as

above, then

� =
{
λ ∈ h∗

∣∣∣
∣μ j ∈ Z, ∀ j and all λi ∈ Z or all λi ∈ Z +

1

2

}

and

Z� =
{
λ ∈ h∗

∣∣
∣∣λi , μ j ∈ Z, ∀i, j and

m∑

i=1

λi +
n∑

j=1

μ j is even

}
.

So

2� ∩ Z� =
⎧
⎨

⎩
2Z� + Z

(
n∑

i=1
εi

)
+ 2Zεn, if m = 2k,

2Z� + 2Zεn, if m = 2k + 1,

for some positive integer k. Thus the algebra Jev(g) is, respectively, equal to J (g)0 ⊕
J (g)1/2 for m = 2k and J (g)0 for m = 2k + 1, where

J (g)0 =
{
f ∈ Z[x±1

1 , · · · , x±1
m , y±1

1 , · · · , y±1
n ]W

∣
∣∣∣xi

∂ f

∂xi
+ y j

∂ f

∂y j
∈ (xi − y j )

}
,

and

J (g)1/2 =
{∏

i, j

(ui − v j )
(
(x1x2 · · · xm)1/2Z[x±1

1 , · · · , x±1
m , y±1

1 , · · · , y±1
n ]
)W}

.

D(2, 1, α) case: In this case,

� =
{ 3∑

i=1

λiεi

∣∣
∣∣λi ∈ Z, ∀i

}
, and Z� =

{ 3∑

i=1

λiεi

∣∣
∣∣λi ∈ Z and λi − λ j ∈ 2Z, ∀i, j

}
.

So 2� ∩ Z� = 2�. Thus the algebra

Jev(g) =
{{

c + �h|c ∈ Z, h ∈ Z[u1, u2, u3]
}
, if α is not rational,

{
g(wα) + �h|g ∈ Z[ω], h ∈ Z[u1, u2, u3]

}
, if α = p/q with p ∈ Z, q ∈ N,

where

� = u21 + u22 + u23 − u1u2u3 − 4, ui = xi + x−1
i , for i = 1, 2, 3,
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and

ωα = (x1 + x−1
1 − x2x3 − x−1

2 x−1
3 )

(x p
2 − x−p

2 )(xq3 − x−q
3 )

(x2 − x−1
2 )(x3 − x−1

3 )
+ x p

2 x
−q
3 + x−p

2 xq3 .

F(4) case: In this case,

� =
{
μδ +

3∑

i=1

λiεi

∣∣∣∣all λi ∈ Z or all λi ∈ Z +
1

2
, 2μ ∈ Z

}
,

and

Z� =
{
μδ +

3∑

i=1

λiεi

∣∣∣∣all λi , μ ∈ Z or all λi , μ ∈ Z +
1

2

}
.

So 2� ∩ Z� = 2�, and the algebra

Jev(g)=
{
g(ω1, ω2) + �h

∣∣∣h ∈ Z[x±2
1 , x±2

2 , x±2
3 , (x1x2x3)

±1, y±1]W , g ∈ Z[ω1, ω2]
}
,

where

� =
(
y + y−1 − x1x2x3 − x−1

1 x−1
2 x−1

3

) 3∏

i=1

(

y + y−1 − x1x2x3
x2i

− x2i
x1x2x3

)

,

and

ωk =
∑

1�i< j�3

(
x2ki + x−2k

i +
1

2

)(
x2kj + x−2k

j +
1

2

)

− 3

4
+ y2k + y−2k − (yk + y−k)

3∏

i=1

(
xki + x−k

i

)

with k = 1, 2, and W = Z2 × (S3 � Z
3
2).

G(3) case: In this case, � = Z� = {λ1ε1 + λ2ε2 + μδ|λ1, λ2, μ ∈ Z
}
. So 2� ∩

Z� = 2�, and the algebra

Jev(g) =
{
g(ω) +

3∏

i=1

(v − ui )h

∣
∣∣∣h ∈ Z[v, u1, u2, u3]S3 , g ∈ Z[ω]

}
,

where

ω = v2 − v(u1 + u2 + u3 + 1) + u1u2 + u1u3 + u2u3.

and the notations ui , v are the same as above.
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